Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research and Markets: Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology

Abstract:
Research and Markets (www.researchandmarkets.com/research/d6667d/computational_meth) has announced the addition of John Wiley and Sons Ltd's new book "Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology" to their offering.

Research and Markets: Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology

Dublin, Ireland | Posted on January 25th, 2012

While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena. Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It's a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Key Topics Covered:

A. DFT: The Basic Workforce

Principles of Density Functional Theory: Equilibrium and Nonequilibrium Applications
SIESTA: A Linear-Scaling Method for Density Functional Calculations
Large-Scale Plane-Wave-Based Density Functional Theory: Formalism, Parallelization, and Applications

B. Higher-Accuracy Methods

Quantum Monte Carlo, Or, Solving the Many-Particle Schrdinger Equation Accurately While Retaining Favorable Scaling with System Size
Coupled-Cluster Calculations for Large Molecular and Extended Systems
Strong-Correlated Electrons: Renormalized Band Structure Theory and Quantum Chemical Methods

C. More-Economical Methods

The Energy-Based Fragmentation Approach for Ab Initio Calculations of Large Systems
MNDO-like Semiempirical Molecular Orbital Theory and Its Application to Large Systems
Self-Consistent-Charge Density Functional Tight-Binding Method: An Efficient Approximation of Density Functional Theory
Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry

D. Advanced Applications

SIESTA: Properties and Applications
Modeling Photobiology Using Quantum Mechanics and Quantum Mechanics/Molecular Mechanics Calculations
Computational Methods for Modeling Free-Radical Polymerization
Evaluation of Nonlinear Optical Properties of Large Conjugated Molecular Systems by Long-Range-Corrected Density
Calculating the Raman and HyperRaman Spectra of Large Molecules and Molecules Interacting with Nanoparticles
Metal Surfaces and Interfaces: Properties from Density Functional Theory
Surface Chemistry and Catalysis from Ab Initio-Based Multiscale Approaches
Molecular Spintronics
Calculating Molecular Conductance

Author:

JEFFREY R. REIMERS

####

For more information, please click here

Contacts:
Research and Markets
Laura Wood, Senior Manager,

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project