Home > Press > Now you see it, now you didn't: Cloaking a moment in time
A laser beam passes through a "split-time lens" - a specially designed waveguide that bumps up the wavelength for a while then suddenly bumps it down. The signal then passes through a filter that slows down the higher-wavelength part of the signal, creating a gap in which the cloaked event takes place. A second filter works in the opposite way from the first, letting the lower wavelength catch up, and a final split-time lens brings the beam back to the original wavelength, leaving no trace of what happened during the gap. |
Abstract:
In movie magic, people and objects can appear or disappear or move from place to place in an instant. Just stop the camera, move things around and start it again. Now, Cornell researchers have demonstrated a similar "temporal cloak" -- albeit on a very small scale -- in the transport of information by a beam of light.
The trick is to create a gap in the beam of light, have the hidden event occur as the gap goes by and then stitch the beam back together. Alexander Gaeta, professor of applied and engineering physics, and colleagues report their work in the Jan. 5 issue of the journal Nature.
The researchers created what they call a time lens, which can manipulate and focus signals in time, analogous to the way a glass lens focuses light in space. They use a technique called four-wave mixing, in which two beams of light, a "signal" and a "pump," are sent together through an optical fiber. The two beams interact and change the wavelength of the signal. To begin creating a time gap, the researchers first bump the wavelength of the signal up, then by flipping the wavelength of the pump beam, bump it down.
The beam then passes through another, very long, stretch of optical fiber. Light passing through a transparent material is slowed down just a bit, and how much it is slowed varies with the wavelength. So the lower wavelength pulls ahead of the higher, leaving a gap, like the hare pulling ahead of the tortoise. During the gap the experimenters introduced a brief flash of light at a still higher wavelength that would cause a glitch in the beam coming out the other end.
Then the split beam passes through more optical fiber with a different composition, engineered to slow lower wavelengths more than higher. The higher wavelength signal now catches up with the lower, closing the gap. The hare is plodding through mud, but the tortoise is good at that and catches up. Finally, another four-wave mixer brings both parts back to the original wavelength, and the beam emerges with no trace that there ever was a gap, and no evidence of the intruding signal.
None of this will let you steal the crown jewels without anyone noticing. The gap created in the experiment was 15 picoseconds long, and might be increased up to 10 nanoseconds, Gaeta said. But the technique could have applications in fiber-optic data transmission and data processing, he added. For example, it might allow inserting an emergency signal without interrupting the main data stream, or multitasking operations in a photonic computer, where light beams on a chip replace wires.
The experiment was inspired, Gaeta said, by a theoretical proposal for a space-time cloak or "history editor" published by Martin McCall, professor of physics at Imperial College in London, in the Journal of Optics in November 2010.
"But his method required an optical response from a material that does not exist," Gaeta said. "Now we've done it in one spatial dimension. Extending it to two [that is, hiding a moment in an entire scene] is not out of the realm of possibility. All advances have to start from somewhere."
The research was funded by the Defense Advanced Research Project Agency and by Cornell's Center for Nanoscale Systems, which is supported by the National Science Foundation and the New York State Division of Science, Technology and Innovation (NYSTAR).
####
For more information, please click here
Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093
Cornell Chronicle:
Bill Steele
(607) 255-7164
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||