Home > Press > Iranian, American Researchers Produce Nano-Cellulose Drug Carriers
Abstract:
Nano-cellulose drug carriers were produced by Iranian researchers from Islamic Azad University in association with their colleagues from Northern Carolina University of the US in a bid to fight various types of illness-causing bacteria such as the ones that are resistant to antiseptics.
"Natural nanopolymers, among which nano-cellulose is one of the most important ones, attracted the attention of researchers about 10 years ago. Nano-cellulose consists of crystalline and biological particles and they can be used as the base material in many industries due to their ability of surface modification," Dr. Hassan Sadeqifar, member of the Scientific Board of Islamic Azad University, told the INIC.
Studying at Northern Carolina State University in the United States at post-doctorate level in the field of natural nanomaterials, Sadeqifar has carried out research aiming at presenting a new method for the production of cellulose nanoparticles from cellulose fibers and to carry out chemical modification on the surface of such particles in order to be used in antibacterial and medical purposes.
"Cellulose nanoparticles are chemically neutral but biologically degradable and compatible with human's body. Therefore, in addition to compatibility with human body's tissues, such materials degrade gradually when they are used as the base material in the production of antiseptics or drug carriers," Sadeqifar continued.
Cellulose nanoparticles have applications in numerous industries such as polymer, food, nano-electronics, paper fabrication, filters for chemical materials and gases neutralization, textile, and so forth. However, their application in medical purposes and drug carriers was the main purpose of this study.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||