Home > Press > NREL Licenses Technology to Increase Solar Cell Efficiency: Natcore to develop ‘black silicon’ solar cells based on award-winning innovation
Abstract:
The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that Natcore Technology Inc. has been granted a patent license agreement to develop a line of black silicon products.
Natcore and NREL also will enter a Cooperative Research and Development Agreement (CRADA) to develop commercial prototypes based on NREL's black silicon inventions and patents.
"This technology will play and important role in moving forward the availability of solar technologies," NREL Vice President for Commercialization & Technology Transfer William Farris said. "It is one more step to help bolster the Department of Energy's SunShot Initiative to make solar energy cost competitive with other forms of energy by the end of the decade."
The Black Silicon Nanocatalytic Wet-Chemical Etch emerged from work by NREL photovoltaic researchers that demonstrated that black silicon solar cells, which have been chemically etched to appear black, better absorb the sun's energy. The inexpensive, one-step method reduces light reflection from silicon wafers to less than 2 percent, and promises to reduce manufacturing production cost and capital expense.
Any photons reflected from the surface of a solar cell are wasted. To reduce reflected sunlight and increase cell efficiency, NREL scientists invented the antireflection process that turns silicon wafers black so they absorb 98 percent of solar radiation. Today's solar cells absorb about 95 percent of the sun's radiation.
The much-lower-cost recipe is still a few tenths of a percent less efficient than the best of the conventional cells. However, the black silicon prevents reflection of low-angle morning and afternoon sunlight far better, which means a jump in photovoltaic efficiency of at least 1 percentage point can be achieved.
NREL estimates that its method can reduce processing costs by 4 to 8 percent, resulting in overall savings in solar cell manufacturing of 1 to 3 percent, making black silicon particularly appealing.
The Black Silicon Nanocatalytic Wet-Chemical Etch was honored with a 2010 R&D 100 Award. The R&D 100 award is considered in the research and development community to be "the Oscars of Innovation."
####
About National Renewable Energy Laboratory (NREL)
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.
For more information, please click here
Contacts:
Media may contact:
Heather Lammers
303-275-4084
Copyright © National Renewable Energy Laboratory (NREL)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||