Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research partnership to focus on infrared imaging

Swastik Kar, left, and Srinivas Sridhar will collaborate with the Army Research Laboratory to design graphene-based technology for use in low-cost infrared imaging applications for the military. Photo by Mary Knox Merrill.
Swastik Kar, left, and Srinivas Sridhar will collaborate with the Army Research Laboratory to design graphene-based technology for use in low-cost infrared imaging applications for the military.

Photo by Mary Knox Merrill.

Abstract:
The Electronic Materials Research Institute (eMRI) at Northeastern University has signed a three-year cooperative research agreement with the United States Army Research Laboratory at Adelphi, Md., to design graphene-based technology for use in low-cost infrared imaging applications for the military.

Research partnership to focus on infrared imaging

Boston, MA | Posted on December 18th, 2011

The project is in collaboration with the Defense Advanced Research Projects Agency (DARPA). Distinguished Professor of Physics Srinivas Sridhar, director of the eMRI, and Assistant Professor of Physics Swastik Kar — both in the College of Science — will collaborate on the project with Dr. Nibir Dhar of DARPA and Dr. Madan Dubey of the Army Research Laboratory.

The project dovetails with Northeastern's focus on use-inspired research that solves global challenges in health, security and sustainability. "Graphene-based technology can potentially revolutionize infrared cameras used in a variety of military and civilian applications," Sridhar said.

Graphene, which is known for being a superior thermal and electric conductor, is composed of carbon atoms arranged in tightly bound one-atom-thick hexagons. Two physicists won the 2010 Nobel Prize in Physics for their groundbreaking experiments with the so-called "miracle material of the 21st century," which they say is "some 200 times stronger than structured steel."

The Northeastern team, which has developed novel approaches toward synthesizing the nanomaterial, will help design graphene-based bolometers, which measure heat generated by objects or people. The military, Sridhar said, may use the bolometers in night vision goggles or for thermal body imaging and may eventually incorporate the technology into smart phones.

The long-term goal, he noted, is to license and mass-produce the novel technology for low-cost infrared cameras.

"Providing a thermal camera to each soldier requires affordable and low SWaP (size, weight and power) cameras," said Dhar, Program Manager at DARPA Microsystems Technology Office. "DARPA has a program to address both these attributes. Innovation is needed to increase the sensitivity of bolometers while maintaining these attributes. Nanostructured materials such as graphene may provide a low-cost and low-SWaP alternative."

"A low-cost, graphene-based thermal sensor technology could be very beneficial to the Army," noted Dr. Paul Amirtharaj, the Electronics and RF Division Chief of the Army Research Laboratory in Adelphi, Md.

The mission of the eMRI is to synergize and catalyze research and education in materials for nano-, bio- and info-technologies, with a particular focus on nanomaterials for energy, medicine and electronic and photonic nanostructures.

####

For more information, please click here

Contacts:
Jason Kornwitz
617-373-5729

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Turning up the signal November 8th, 2024

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project