Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology: Probing for interactions: Nanoparticles offer insights into interactions between single-stranded DNA and their binding proteins

Schematic illustration showing the mechanism used to probe interactions between single-stranded DNA (ssDNA) and single stranded DNA-binding protein (SSB)
Copyright : 2011 ACS
Schematic illustration showing the mechanism used to probe interactions between single-stranded DNA (ssDNA) and single stranded DNA-binding protein (SSB)

Copyright : 2011 ACS

Abstract:
Double-stranded DNA must disentangle itself into single strands during replication or repair to allow functional molecules to bind and perform their various operations. Cellular proteins specifically bind to single-stranded DNA to prevent their premature recombination. Unfortunately, detailed studies of these DNA-protein interactions have been hindered by the need for expensive instrumentation and time-consuming labelling techniques. Yen Nee Tan at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now developed a convenient method to characterize the interactions between single-stranded DNA and their binding proteins.

Nanotechnology: Probing for interactions: Nanoparticles offer insights into interactions between single-stranded DNA and their binding proteins

Singapore | Posted on November 28th, 2011

The researchers used the optical properties of gold nanoparticles to probe the mechanism of protein-DNA binding. When the nanoparticles were well dispersed in solution, they yielded a bright red color, but when aggregated, the solution changed to blue. Tan and co-workers discovered that when single-stranded DNA and its binding protein were both present in the solution, coupled with a salt that stimulates nanoparticle aggregation, the DNA remained red in color, indicating that the DNA-protein complexes had bound with the nanoparticles through electrosteric stabilization forces. In contrast, when the protein or single-stranded DNA was introduced alone in the salt solution, there was a greater shift to the blue-grey color, indicating nanoparticle aggregation (see image).

"The greatest challenge in this work was to determine the optimum conditions for single-stranded DNA to bind with its binding protein to form complexes that confer the highest stability to gold nanoparticles from salt-induced aggregation," says Tan.

The researchers attribute binding of the nanoparticles and the DNA-protein complexes to the presence of sulphur-containing groups in the protein, which are known to create strong bonds with gold. The protein molecules alone are smaller in molecular size than the protein-DNA complexes, leading to a less effective steric stabilization of the nanoparticles.

Tan and co-workers showed that there was a minimum length of DNA sequence under which the binding protein-DNA adhesion mechanism could operate. They found that the binding protein had a preference for binding to specific chemical units (bases) which make up DNA, and were able to spot DNA sequence variations, called single nucleotide polymorphisms (SNPs), even at the extreme ends of the molecule which are difficult to identify. Double-stranded DNA with SNPs cannot bind together so closely. The binding protein can thus attach to the dissociated single-stranded DNA to form protein-DNA complexes, offering sites to which gold nanoparticles can adhere.

"We plan to further develop this assay into a hassle-free genotyping assay to detect SNPs in real biological samples containing long genomic DNA," says Tan.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

####

For more information, please click here

Contacts:
Lee Swee Heng

Copyright © The Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute of Materials Research and Engineering:

Research article in Analytical Chemistry

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project