Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fighting Parkinson's with carbon nanoparticles

Abstract:
One of the problems affecting the human nervous system is dopamine deficiency. But testing of dopamine concentration is costly and requires sophisticated equipment not available in a doctor's office. Enter a team of Polish scientists who developed a method enabling the detection of dopamine in solutions both easily and cheaply, even in the presence of interferences. The study is an outcome of the NOBLESSE ('Nanotechnology, biomaterials and alternative energy source for the European Research Area (ERA))' project, which is backed with EUR 3.3 million under the 'Regions of Knowledge' Theme of the EU's Seventh Framework Programme (FP7). The results are published in the journal Biosensors and Bioelectronics.

Fighting Parkinson's with carbon nanoparticles

Warsaw, Poland | Posted on November 28th, 2011

Scientists at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw coated new electrodes with carbon nanoparticles deposited on silicate submicroparticles to get the targeted result. They applied the electrodes so as to determine dopamine concentration in solutions in the presence of uric and ascorbic acids, and paracetamol, substances that get in the way of dopamine analysis.

This latest development to detect dopamine could clear the path for securing fast and inexpensive medical tests that doctors can use even in their offices. This information will help physicians determine the likelihood of a patient suffering from popular nervous system disorders including Parkinson's disease.

The researchers developed the electrodes by alternating layers of silicate submicroparticles and carbon nanoparticles. According to the team, the size of the silicate submicroparticles ranges from 100 nanometres to 300 nanometres (billionth parts of a metre). Being nonconductive, they are used only as a framework extending the electrode surface. Carbon nanoparticles, ranging between 8 nanometres and 18 nanometres in size, densely coat the silicate particles that form the actual conductive working surface.

'Carbon nanoparticles have negatively charged functional groups, and the silicates positively charged ones,' explains doctoral student Anna Celebanska of the IPC PAS. 'The electrostatic interactions between them are quite strong. We checked that by multiple repeating of the immersion, a "sandwich" consisting of up to 24 layers can be obtained on the electrode surface.'

The scientists applied the new electrodes for dopamine sensing in solutions. The carbon nanoparticle-coated electrodes are placed inside a prepared solution containing the same, and the electric potential is then applied. They say dopamine is electrochemically active and can be oxidised by adjusting the potential value.

'The results of the completed tests turned out very good,' Ms Celebanska says. 'Our method is among the most sensitive methods for dopamine sensing. It allows to detect dopamine at concentrations as low as 10-7 mole per litre in the presence of interferences at concentrations up to 10-3 mole per litre.'

Commenting on the results of the study, Professor Marcin Opallo [z1]says: 'The method has a natural detection threshold, and that's why we can conclude on dopamine deficiency in the body. How large is the actual deficiency? At present we cannot answer the question. We hope, however, for further increase in the method's sensitivity.'

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS):

Biosensors and Bioelectronics:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project