Home > Press > Defying Expectation - Cellular Uptake of Nanoparticles
![]() |
Abstract:
Where previously materials with useful properties have seen widespread application prior to the discovery of their potentially undesirable behaviours - asbestos comes to mind - the introduction of new materials to our living and working environments is now preceded by ever more complex and rigourous testing.
Nanomaterials in particular have become a part of the collective consciousness, and not just because of the myriad cautionary science fiction based on this size regime: Nanoparticles of all shapes and compositions are popping up with increasing regularity in research fields from electronics to medicine but, because of their often surprisingly different behaviours as compared to their bulk counterparts, it is even more important to be able to predict and control their interactions before giving them the green light.
As regards the human body's ability to deal with foreign materials, studies of the uptake and retention of nanoparticles in different organs are becoming more frequent in an effort to prove or improve the safety of these particles in environments where we are likely to come into direct contact with them.
Medicine is an obvious example, where nanoparticles have shown great promise as agents for targeted drug or gene delivery, chemotherapy, and non-invasive imaging. However, in such cases it is highly desirable to be able to engineer particles able to evade the body's clearance mechanisms, at least for long enough to deliver a drug payload to an appropriate site in the body, for example.
With that in mind, a group working in Dublin has investigated the quantitative effect of particle size on the uptake efficiency and localisation of carboxylated polystyrene nanoparticles across cell lines from different parts of the human body, representative of the main avenues of exposure to such particles, as well as the variation in uptake kinetics for the different cell types. Their confocal microscopy and flow cytometry results suggest that nanoparticle uptake defies the expected size limits for uptake processes: a result which has important implications for the future safety assessments of these nanomaterials.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Tiago dos Santos, Small, 2011 ; DOI: 10.1002/smll.201101076
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Safety-Nanoparticles/Risk management
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |