Home > Press > Regulating cancer cell migration and invasion using ROS and Cav-1
![]() |
Abstract:
An investigation by a group of Thai researchers has demonstrated that Caveolin-1 (Cav-1) plays an important role in the migration and invasion of human lung cancer cells and that these effects are regulated by cellular reactive oxygen species (ROS). The group used transfected human lung cancer cells with Cav-1 plasmid which were incubated and cultured prior to performing migration assay.
"The result of this investigation shows the effect of ROS on cell migratory functions is dependent on Cav-1 expression and is associated with Akt activity" said Dr. Ubonthip Nimmannit of National Nanotechnology Center (NANOTEC). "The activation of Akt activity by Cav-1 helps to mediate cancer cell migration and is likely to play an important role in the ROS induced effect on cell motility alteration".
The investigation reveals the differential role of individual ROS on cancer cell mortility and Cav-1 expression helps to better understand tumor progression and metastasis which is considered important in cancer research.
Collaborators on this investigation included Chulalongkorn University, West Virginia University, National Institute for Occupational Safety and Health, West Virginia, and NANOTEC. The researchers reported their investigation in a paper published by the Journal of Biological Chemistry.
####
For more information, please click here
Contacts:
Media contact:
Ramjitti Indaraprasirt
Manager
International Relations Section
NANOTEC
02-564-7100 ext: 6617
Copyright © NANOTEC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |