Home > Press > Regulating cancer cell migration and invasion using ROS and Cav-1
![]() |
Abstract:
An investigation by a group of Thai researchers has demonstrated that Caveolin-1 (Cav-1) plays an important role in the migration and invasion of human lung cancer cells and that these effects are regulated by cellular reactive oxygen species (ROS). The group used transfected human lung cancer cells with Cav-1 plasmid which were incubated and cultured prior to performing migration assay.
"The result of this investigation shows the effect of ROS on cell migratory functions is dependent on Cav-1 expression and is associated with Akt activity" said Dr. Ubonthip Nimmannit of National Nanotechnology Center (NANOTEC). "The activation of Akt activity by Cav-1 helps to mediate cancer cell migration and is likely to play an important role in the ROS induced effect on cell motility alteration".
The investigation reveals the differential role of individual ROS on cancer cell mortility and Cav-1 expression helps to better understand tumor progression and metastasis which is considered important in cancer research.
Collaborators on this investigation included Chulalongkorn University, West Virginia University, National Institute for Occupational Safety and Health, West Virginia, and NANOTEC. The researchers reported their investigation in a paper published by the Journal of Biological Chemistry.
####
For more information, please click here
Contacts:
Media contact:
Ramjitti Indaraprasirt
Manager
International Relations Section
NANOTEC
02-564-7100 ext: 6617
Copyright © NANOTEC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||