Home > Press > Researchers Help In Search For New Ways To Image, Therapeutically Target Melanoma
Abstract:
Because the incidence of malignant melanoma is rising faster than any other cancer in the U.S., researchers at Moffitt Cancer Center in Tampa, Fla., and colleagues at Tampa-based Intezyne Technologies, Inc., Western Carolina University and the University of Arizona are working overtime to develop new technologies to aid in both malignant melanoma diagnosis and therapy. A tool of great promise comes from the world of nanomedicine - where tiny drug delivery systems are measured in the billionths of meters and are being designed to deliver targeted therapies.
Which therapies are appropriate to be loaded into nano-sized vehicles to attach to the right receptors for targeting purposes is an issue.
"Melanoma progression is associated with altered expression of cell surface proteins, including adhesion proteins and receptors," said study co-author David L. Morse, Ph.D., whose work at Moffitt includes experimental therapeutics and diagnostic imaging. "Eighty percent of malignant melanomas express high levels of the MC1R receptor, one of a family of five receptors."
Their study, published in a recent issue of the Journal of Medicinal Chemistry, tested the family of receptors, including MC1R, to find out which receptors would respond best when the right ligand was loaded into a nano-sized spherical delivery device resembling a Koosh Ball called a "micelle."
According to study co-author Robert J. Gillies, Ph.D., director of Molecular and Functional Imaging and vice chair of Radiology Research at Moffitt, MC1R has been in the past investigated as a target for selective imaging and for potential therapeutic agents and is known to play a role in skin pigmentation and hair color. The search for the right "ligand" (a substance that forms a complex with a biomolecule) for use in targeting the right receptor, is ongoing.
"The development of ligands that can be attached to micelles and/or nanoparticles to target cancer cells relative to healthy organs is a subject of great research and great potential," said Gilles.
However, failures in this effort can emerge when attachments lose affinity, when poor stability results in collapse before the nano-sized vehicle gets to the vicinity of the tumor, or when the nanoparticle size is too big to escape the body's vascular system. Each issue needs to be addressed, said Gillies.
In this study, Gilles and Morse and colleagues tested one ligand that was found to have "high affinity and selectivity" for MC1R. That ligand was subsequently modified for attachment to a polymer micelle. Noting the three hurdles to be overcome - ligand affinity, nanoparticle stability and right nanoparticle size - the authors concluded that their chosen ligand "remained selective after attachment" and that the increased binding affinity of the ligand to MC1R demonstrated the stability of the system.
"We are also confident that our micelles are of sufficient size to escape the vasculature, and studies in mice are underway to evaluate the selectivity and stability of this targeted micelle system," concluded Morse.
The Moffitt researchers and their colleagues also feel that this development is a step in the right direction toward more effective imaging of malignant melanoma as well as the development of better targeted therapies for individualized treatment of the disease using nano-sized drug delivery systems.
About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews
Located in Tampa, Moffitt Cancer Center is Florida's only NCI Comprehensive Cancer Center, a designation that recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt currently has 14 affiliates in Florida, one in Georgia, one in Pennsylvania and two in Puerto Rico. Additionally, Moffitt is a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer. Moffitt marks a very important anniversary in 2011 - 25 years committed to one mission: to contribute to the prevention and cure of cancer.
####
For more information, please click here
Contacts:
Ferdie De Vega
(813) 745-7858
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |