Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The quest for the tiny carbon nanotube

Tom Flores
Tom Flores

Abstract:
As he tailors one of the world's finest imaging instruments to tackle one of science's most baffling challenges, Tom Flores feels like he's playing a microscopic game of Where's Waldo.

The quest for the tiny carbon nanotube

Bethlehem, PA | Posted on November 1st, 2011

Flores, a junior majoring in physics, is on a quest for something more elusive—the tiny carbon nanotube.

Carbon nanotubes measure 1 to 5 nanometers in diameter. One nanometer is a billionth of a meter, or between one ten-thousandth and one hundred-thousandth the thickness of a human hair.

With unmatched strength, stiffness and hardness, and length-to-diameter ratios of as much as millions to one, CNTs have potential in medicine, energy and many other applications.

But their infinitesimal size makes it difficult to find and observe CNTs. While Waldo hides behind people, CNTs conceal themselves among bumps, nicks, specks of dust and other imperfections on a microscope slide. They reveal their presence by emitting infrared light when a light source is directed at them.

An ultrathin plane of focus

Flores began studying CNTs last spring with Slava Rotkin, associate professor of physics, and continued last summer in the physics department's Research Experience for Undergraduates program. Funded by the National Science Foundation, the program enables students to do a 10-week paid internship alongside a faculty member.

Lehigh's REU program, with more than two decades of NSF funding, is one of the nation's oldest. In the past five years, an average of 25 to 28 students, roughly one-third from Lehigh, have taken part in the internship.

Flores and two graduate students—Massooma Pirbhai and Tetyana Ignatova—study CNTs with a custom-made NTEGRA-Spectra recently acquired by Rotkin and Richard Vinci, professor of materials science and engineering. The instrument pairs an optical microscope with an atomic-force microscope (AFM), whose needle-like probe scans a surface and records its topographical features.

Flores and his colleagues combine AFM with an optical imaging technique called total internal reflection fluorescence.

"TIRF is a form of photoluminescence," says Flores. "You excite an object so that it gives off light, which provides information about the object and its properties.

"TIRF can excite an object in an extremely thin plane. We study single-walled CNTs, which are 1 nm in diameter. Our plane of focus has to be very thin; if not, we get luminescence from impurities near our sample."

A unique integration of microscopy techniques

Flores uses the AFM probe tip to locate the position of CNTs on a sample.

"We produce an AFM topographical image that shows us where we need to focus. The resolution of that image is limited only by the diameter of the tip. This is much better than you can do with an optics probe.

"Our project is like a game of Where's Waldo. We're trying to find a tiny object in a giant sample. We have to combine information from the AFM about physical characteristics—shape and size—with information supplied by TIRF about how light interacts with the sample."

Only one other research group in the U.S., says Flores, integrates AFM and TIRF in a setup exactly the same as Lehigh's. Combining the two techniques requires resourcefulness. To achieve optimum focus and illumination, Flores and his colleagues have had to modify the sample stage and lenses of the optical microscope.

"Our overall goal is to find and examine CNTs and characterize their properties so that engineers can find applications for them.

"We don't have images of CNTs yet, but we have produced images of polyethylene beads with dyes that emit light at various wavelengths.

"So we know our system is working."

####

For more information, please click here

Contacts:
Kurt Pfitzer

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project