Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Northwestern researchers create nanomaterials that mimic structure of natural materials

Abstract:
A team of Northwestern scientists recently made considerable improvements in designing nanomaterials that can be used in various areas of research due to their unique physical properties.

Northwestern researchers create nanomaterials that mimic structure of natural materials

Chicago, IL | Posted on October 18th, 2011

Nanotechnologists under Prof. Chad Mirkin collaborated with theorists under Prof. George Schatz to create crystalline nanomaterials from nanoparticles and DNA.

Researchers in Mirkin's lab were first able to create these nanomaterials 15 years ago, but until recently, their structure did not resemble other natural crystalline materials, like silicon, Schatz said. This group of scientists, however, was able to work together to create materials possessing this structure, improving the quality and utility of such nanomaterials.

The goal of the research is to "bond" nanomaterials with strands of DNA, building new particles that can enhance fields like energy generation and biomedicine, according to a University press release. By creating this model, nanomaterials can be built into crystalline structures such as those found in nature.

"Now, there are more powerful things you can do with them," Schatz said. "You can use these kinds of materials for DNA and protein defectors and nucleic acids."

As a theorist, Schatz worked with graduate students and postdoctoral researchers to create a model designed to determine which structures will be created under which conditions.

"The key to the project was that the predictions of the model and synthesis agreed," Schatz said. "That meant the rules were correct."

Although Mirkin and Schatz concentrate in different scientific fields, they have worked together before. However, Schatz emphasized that the professors did not initiate this project.

"The project emerged through the interaction of students," he said. "Students were able to iterate in development of rules and models. That interaction led to the final result."

Graduate students Rob Macfarlane and Matt Jones from Mirkin's lab worked closely with Nadine Harris, a postdoctoral researcher from Schatz's lab, to design these crystalline lattice structures.

Macfarlane took on a similar project in 2008 and published a paper discussing ordered nanomaterials. He remained interested in further improving these nanomaterials even after many of his colleagues from the 2008 project left the University, and he reached out to James and Harris, whose respective interests in triangular particles and theoretics complemented his work in spherical particles.

"When each of us needs someone else's expertise, we go to them," Macfarlane said. "One of the great things about Northwestern University science is it's very collaborative. At other places, people have their niches. Here, everyone helps out."

Jones said the project required a team with expertise of scientific concepts from different fields.

"You need people who understand DNA, material scientists and theorists," he said. "It builds on a lot of different disciplines. It could really only happen at a place like Northwestern."

According to Schatz, this reputation brings in funding for further research, which in turn leads to additional opportunities for students. Weinberg freshman Hannah Dunn, a chemistry major, said the nanomaterial research is an exciting accomplishment for NU researchers.

"I chose Northwestern because it has a lot of research and it has the funding of a large research institution," Dunn said. "It really influenced my decision to come here."

####

Contacts:

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project