Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene shows unusual thermoelectric response to light: Finding could lead to new photodetectors or energy-harvesting devices.

Photo: Len Rubenstein MIT
Photo: Len Rubenstein MIT

Abstract:
Graphene, an exotic form of carbon consisting of sheets a single atom thick, exhibits a novel reaction to light, MIT researchers have found: Sparked by light's energy, the material can produce electric current in unusual ways. The finding could lead to improvements in photodetectors and night-vision systems, and possibly to a new approach to generating electricity from sunlight.

Graphene shows unusual thermoelectric response to light: Finding could lead to new photodetectors or energy-harvesting devices.

Cambridge, MA | Posted on October 8th, 2011

This current-generating effect had been observed before, but researchers had incorrectly assumed it was due to a photovoltaic effect, says Pablo Jarillo-Herrero, an assistant professor of physics at MIT and senior author of a new paper published in the journal Science. The paper's lead author is postdoc Nathaniel Gabor; co-authors include four MIT students, MIT physics professor Leonid Levitov and two researchers at the National Institute for Materials Science in Tsukuba, Japan.

Instead, the MIT researchers found that shining light on a sheet of graphene, treated so that it had two regions with different electrical properties, creates a temperature difference that, in turn, generates a current. Graphene heats inconsistently when illuminated by a laser, Jarillo-Herrero and his colleagues found: The material's electrons, which carry current, are heated by the light, but the lattice of carbon nuclei that forms graphene's backbone remains cool. It's this difference in temperature within the material that produces the flow of electricity. This mechanism, dubbed a "hot-carrier" response, "is very unusual," Jarillo-Herrero says.

Such differential heating has been observed before, but only under very special circumstances: either at ultralow temperatures (measured in thousandths of a degree above absolute zero), or when materials are blasted with intense energy from a high-power laser. This response in graphene, by contrast, occurs across a broad range of temperatures all the way up to room temperature, and with light no more intense than ordinary sunlight.

The reason for this unusual thermal response, Jarillo-Herrero says, is that graphene is, pound for pound, the strongest material known. In most materials, superheated electrons would transfer energy to the lattice around them. In the case of graphene, however, that's exceedingly hard to do, since the material's strength means it takes very high energy to vibrate its lattice of carbon nuclei — so very little of the electrons' heat is transferred to that lattice.

Because this phenomenon is so new, Jarillo-Herrero says it is hard to know what its ultimate applications might be. "Our work is mostly fundamental physics," he says, but adds that "many people believe that graphene could be used for a whole variety of applications."

But there are already some suggestions, he says: Graphene "could be a good photodetector" because it produces current in a different way than other materials used to detect light. It also "can detect over a very wide energy range," Jarillo-Herrero says. For example, it works very well in infrared light, which can be difficult for other detectors to handle. That could make it an important component of devices from night-vision systems to advanced detectors for new astronomical telescopes.

The new work suggests graphene could also find uses in detection of biologically important molecules, such as toxins, disease vectors or food contaminants, many of which give off infrared light when illuminated. And graphene, made of pure and abundant carbon, could be a much cheaper detector material than presently used semiconductors that often include rare, expensive elements.

The research also suggests graphene could be a very effective material for collecting solar energy, Jarillo-Herrero says, because it responds to a broad range of wavelengths; typical photovoltaic materials are limited to specific frequencies, or colors, of light. But more research will be needed, he says, adding, "It is still unclear if it could be used for efficient energy generation. It's too early to tell."

"This is the absolute infancy of graphene photodetectors," Jarillo-Herrero says. "There are many factors that could make it better or faster," which will now be the subject of further research.

Philip Kim, an associate professor of physics at Columbia University who was not involved in this research, says the work represents "extremely important progress toward optoelectric and energy-harvesting applications" based on graphene. He adds that because of this team's work, "we now have better understanding of photo-generated hot electrons in graphene, excited by light."

The research was supported by the Air Force Office of Scientific Research, along with grants from the National Science Foundation and the Packard Foundation.

David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
617.253.2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project