Home > Press > Nanotechnology for Alzheimer’s disease detection and treatment
Abstract:
In this paper, we present the role of nanotechnology in the development and improvement of techniques for early diagnosis and effective treatment of Alzheimer's disease (AD). Since AD pathology is almost irreversible and present-day medications for AD only lower its associated symptoms, application of disease-modifying treatments could be successful only if AD early diagnosis is possible. The nanodiagnostic methods reported and compared in this paper include both of in vitro and in vivo nature. Of the in vitro approaches, the DNA-nanoparticle conjugates (bio-barcode assay), nanoparticle surface plasmon resonance, scanning tunneling microscopy, and two-photon Rayleigh spectroscopy are presented here. Of the in vivo methods, µMRI and optical imaging techniques are discussed here. The nanotreatment methods for AD are numerous. They are categorized in this report under neuroprotective methods from toxicity of amyloid-β peptide (Aβ) oligomers, oxidative stress of free radicals and nanocarriers for targeted drug delivery. The important agents for neuroprotection include nanogels, fullerene, nano-ceria, dendrimers, gold nanoparticles, and diamondoid derivatives. The major nanocarriers presented here include cholinesterase inhibitors nanocarriers, acetylcholine nanocarrier, metal chelator nanocarriers, (Iron chelators and copper chelators), curcuminoids nanocarrier, anti-oxidant nanocarriers, and gene nanocarriers. Considering that the AD is a multi-factorial disease with several pathogenetic mechanisms and pathways, a multifunctional nanotechnology approach will be needed to target its main molecular culprits. These molecular targets must include, but not limited to, Aβ oligomers, reactive oxygen species (ROS), excessive metal ions, tau phosphorylating kinases and cell cycle proteins.
Amir Nazem1, G.Ali Mansoori2 *
1 College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of BioEngineering, University of Illinois at Chicago, Chicago, IL 60607-7052, USA
* Author to whom correspondence should be addressed.
Published: October 04, 2011
####
For more information, please click here
Copyright © Insciences Journal
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |