Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher Uses Nanoparticles to Make DNA Analysis 1,000 Times Faster

Abstract:
A University of Arkansas researcher has patented a process that reduces the time it takes to perform DNA analysis from hours to minutes. This development could contribute to many areas of health care and law enforcement, including diagnosing and treating disease, developing and testing new vaccines and forensic identification.

Researcher Uses Nanoparticles to Make DNA Analysis 1,000 Times Faster

Fayetteville, AR | Posted on October 3rd, 2011

Donald K. Roper, associate professor of chemical engineering, explained that the ultimate goal of his research is to develop a credit-card-sized device to be used in a doctor's office or at a crime scene to quickly analyze samples of DNA. "That's the power of being able to do this on a really tiny scale," he said.

To analyze DNA, scientists must often make a tiny sample large enough to work with. To do this, they use a process called polymerase chain reaction, or PCR. Roper, who holds the Charles W. Oxford Endowed Professorship in Emerging Technologies, has invented a way to perform this reaction thousands of times faster than traditional methods.

Roper's process, which he developed while working at the University of Utah, uses gold nanoparticles to increase the efficiency of the chain reaction. During the reaction, strands of DNA are heated and cooled in cycles. When the samples are heated, the two strands of a DNA double helix come apart, and when the temperature is lowered, an enzyme called polymerase zips each strand to other, complementary strands, forming two new DNA helixes.

These copies are then heated and cooled again, doubling each time until the desired amount of DNA has been produced.

Roper's method reduces the time involved in these cycles from minutes to milliseconds, which means that a DNA sample could be analyzed within minutes rather than hours. By associating the DNA and enzyme with a gold nanoparticle and then exciting the nanoparticle with a light source or laser beam, Roper can target temperature changes to the area immediately around the DNA. This allows researchers to raise or lower the temperature more quickly. In addition, the process can be used to analyze the DNA during the reaction.

"We can use the laser light and the gold nanoparticles to do both the amplification and the analysis simultaneously," explained Roper. "The electromagnetic field around the nanoparticle is strong enough that it can sense whether or not the strand that we're interested in is there. The laser induces the field and then a detector assays the difference in the field."

Roper's research has implications for many scientific fields. "Genomics underscores everything of interest to biology: gene sequencing, disease diagnostics, pharmaceutical development and genetic analysis," he explained. "DNA is the basis of inheritance for the cell, and the degree of transcription of the DNA determines how a cell will function. This is a tool that examines these processes."

####

For more information, please click here

Contacts:
Donald Roper
associate professor
chemical engineering
College of Engineering
479-575-6691


Camilla Medders
director of communications
College of Engineering
479-575-5697

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project