Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Etch Process Developed at the CNST uses Argon Pulsing to Improve Silicon Etch Rate and Selectivity

Abstract:
Engineers in the CNST NanoFab have developed a new plasma etching technique for silicon which improves the etch rate, the mask selectivity, and the sidewall profile by optimizing the addition of argon to the process flow.

New Etch Process Developed at the CNST uses Argon Pulsing to Improve Silicon Etch Rate and Selectivity

Gaithersburg, MD | Posted on September 30th, 2011

Small and high aspect ratio silicon structures can now be easily and more rapidly fabricated in the NanoFab using fluorinated plasma chemistry that is inherently isotropic. Directly adding argon to a typical SF6/C4F8 plasma primarily causes dilution and reduces the etch rate. By alternating the etch step with an argon-only step, both high selectivity and high etch rates were obtained while maintaining anisotropic etching. In a deep silicon etch, C4F8 is used to protect the Si sidewalls and SF6 is used to etch. Mixing argon with the etchant gases provides very limited or no improvement to the etch rate due to dilution. However, alternating argon surface bombardment steps with the chemical etch steps results in a four-fold increase in the silicon etch rate while maintaining vertical sidewalls. The silicon etch rate increases with the argon step time, independent of the SF6 step time, and the argon bombardment step is rate-determining. It influences the etch rate, as well as the selectivity and etching profile. The engineers postulate that argon surface bombardment renders the top atomic layers of the silicon amorphous, and then gas phase fluorine can react with and remove the silicon. With the long etch times associated with deep silicon trench etching, this faster process is likely to become widely used.

Effect of alternating Ar and SF6/C4F8 gas flow in Si nano-structure plasma etching, L. Chen, V. Luciani, and H. Miao, Microelectronic Engineering 88, 2470-2473 (2011).

####

For more information, please click here

Contacts:
Lei Chen
301-975-2908

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project