Home > Press > New Etch Process Developed at the CNST uses Argon Pulsing to Improve Silicon Etch Rate and Selectivity
Abstract:
Engineers in the CNST NanoFab have developed a new plasma etching technique for silicon which improves the etch rate, the mask selectivity, and the sidewall profile by optimizing the addition of argon to the process flow.
Small and high aspect ratio silicon structures can now be easily and more rapidly fabricated in the NanoFab using fluorinated plasma chemistry that is inherently isotropic. Directly adding argon to a typical SF6/C4F8 plasma primarily causes dilution and reduces the etch rate. By alternating the etch step with an argon-only step, both high selectivity and high etch rates were obtained while maintaining anisotropic etching. In a deep silicon etch, C4F8 is used to protect the Si sidewalls and SF6 is used to etch. Mixing argon with the etchant gases provides very limited or no improvement to the etch rate due to dilution. However, alternating argon surface bombardment steps with the chemical etch steps results in a four-fold increase in the silicon etch rate while maintaining vertical sidewalls. The silicon etch rate increases with the argon step time, independent of the SF6 step time, and the argon bombardment step is rate-determining. It influences the etch rate, as well as the selectivity and etching profile. The engineers postulate that argon surface bombardment renders the top atomic layers of the silicon amorphous, and then gas phase fluorine can react with and remove the silicon. With the long etch times associated with deep silicon trench etching, this faster process is likely to become widely used.
Effect of alternating Ar and SF6/C4F8 gas flow in Si nano-structure plasma etching, L. Chen, V. Luciani, and H. Miao, Microelectronic Engineering 88, 2470-2473 (2011).
####
For more information, please click here
Contacts:
Lei Chen
301-975-2908
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |