Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Super fast net just round the corner

Abstract:
What can you get when you combine graphene with metallic nanostructures? Improved harvesting light by graphene, which could potentially lead to super-fast Internet, a new UK study shows. The study, published in the journal Nature Communications, was funded in part by three EU projects: RODIN, GRAPHENE and NANOPOTS. RODIN ('Suspended graphene nanostructures') is backed under the Nanosciences, Nanotechnologies, Materials and new Production Technologies (NMP) Theme of the Seventh Framework Programme (FP7) to the tune of EUR 2.85 million. The GRAPHENE ('Physics and applications of graphene') and NANOPOTS ('Nanotube based polymer optoelectronics') projects have received European Research Council Starting Grants worth EUR 1.78 million and EUR 1.8 million, respectively.

Super fast net just round the corner

Brussels, Belgium | Posted on September 27th, 2011

A team of scientists, which includes Nobel Prize winners Professors Andre Geim and Kostya Novoselov, from the Universities of Manchester and Cambridge in the United Kingdom has pieced together the puzzle that could enhance the characteristics of graphene devices for use as photodetectors in future high-speed optical communications.

Combining graphene with metallic nanostructures triggered a huge enhancement in harvesting light by graphene without losing any speed. Not only would this help accelerate the Internet but other communications would get a boost as well. A key characteristic of graphene devices is that they are very fast, surpassing current Internet cables.

The scientists placed two closely spaced metallic wires on top of graphene and shone light on this structure. Doing this helped generate electric power. According to them, this simple device presents an elementary solar cell.

The biggest challenge for the researchers was dealing with low efficiency. Graphene is the thinnest material across the globe, absorbing just 3% of light. So the remaining light passes through without contributing to electrical power. To get the results they wanted, the team combined graphene with tiny metallic structures arranged on top of graphene.

Plasmonic nanostructures have helped advance the optical electric field felt by graphene and have concentrated light within the carbon layer, which has a thickness of one atom.

'Graphene seems a natural companion for plasmonics,' says Manchester's Dr Alexander Grigorenko. 'We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic.'

For his part, Professor Novoselov, also from the University of Manchester, says: 'The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications. Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene's chances even further.'

Commenting on the findings, Cambridge's Professor Andrea Ferrari says: 'So far, the main focus of graphene research has been on fundamental physics and electronic devices. These results show its great potential in the fields of photonics and optoelectronics, where the combination of its unique optical and electronic properties with plasmonic nanostructures, can be fully exploited, even in the absence of a bandgap, in a variety of useful devices, such as solar cells and photodetectors.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Communications:

University of Manchester:

University of Cambridge:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project