Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Responsive Labels for Cells

Abstract:
How do you stick a label on something as small as a cell? Cell-labeling techniques are explained, and the use of polymer-coated nanoparticles as environment-sensitive cell labels is demonstrated by scientists in Germany and Australia.

Responsive Labels for Cells

Melbourne, Australia and Marburg, Germany | Posted on September 22nd, 2011

Many scientists are rising to the challenge of effective cell labeling by using nanoparticles as labels; these labels may be either fluorescent, magnetic, or radioactive. Nanoparticles are ideal for this purpose because they are smaller than a cell and can be taken up via the cell machinery and they can be made biocompatible. Nanoparticles can also have properties that make them easily observed from the outside, like fluorescence or magnetism. However water-soluble nanoparticles are not easy to make on a large scale, which can limit their use.

Paul Mulvaney (University of Melbourne, Australia), Wolfgang Parak (Philipps University of Marburg, Germany), and co-workers have reviewed attempts to date to make many sorts of nanoparticles soluble in water. They describe different approaches taken by various scientists, including ligand exchange and encapsulation.

Ligand exchange is useful because the smallest water-soluble nanoparticles can be made in this way, but it can reduce the quantum yield of fluorescent particles and the stability of all particles. This method can, however, be very useful to introduce new functional groups to the particle surface.

Encapsulation of nanoparticles with silica or polymers is another approach to increasing their water-solubility. Growing a silica shell around the particle adds both solubility and chemical functionality, but involves a complex procedure, whereas surrounding the nanoparticle with a layer of polymer that is attracted to both water and the particle can be relatively straightforward to achieve by self-assembly and the procedure does not change much for different particles, which makes it universal. Polymer-coated nanoparticles are very stable, but larger than those produced by ligand exchange.

The researchers don't stop there; they expand upon work they've done using polymer-coated nanoparticles to make sense of cell behavior. In particular, if a pH-sensitive and fluorescent polymer is chosen to coat the nanoparticles, then information can be gleaned about uptake into cells of the particle and any changes in the environment once it is there. So scientists truly can put responsive labels into cells, which should enable us to understand cell behavior better in the future.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project