Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Analytical Biochemistry article highlights utility of NanoInk platform for single cell co-culture studies

Abstract:
NanoInk's® NanoFabrication Systems Division is pleased to announce that its manuscript titled, "Sub-cellular scaled multiplexed protein patterns for single cell co-cultures," has been accepted for publication in the international journal, Analytical Biochemistry. Leveraging patented Dip Pen Nanolithography® (DPN®) technology, findings presented in this article demonstrate the NanoInk platform's ability to construct sub-cellular scaled features of multiple proteins and to subsequently manipulate and study the function of individual cells as well as cellular interactions. An abstract and the complete article can be viewed by clicking on the following link: www.sciencedirect.com/science/article/pii/S0003269711005410.

Analytical Biochemistry article highlights utility of NanoInk platform for single cell co-culture studies

Chicago, IL | Posted on September 20th, 2011

Co-culture experiments are invaluable for their ability to mimic the in vivo environment and facilitate the study of the effects of cell-cell interactions on stem or progenitor cell differentiation and function in normal and disease states. Conventional co-culture techniques like random seeding of multiple cell populations, membrane separation of cell types, and extracellular protein micropatterning are limiting due to the number of experimental variables that cannot be properly controlled.

"Unlike other technology platforms and conventional co-culture techniques, the forthcoming Analytical Biochemistry article demonstrates that NanoInk's tip-based direct protein printing platform deposits sub-micron sized features with nanoscale registry under ambient conditions and enables consistent and controlled live single cell co-culture studies," said Tom Warwick, General Manager of the NanoFabrication Systems Division.

"Using NanoInk's NLP 2000 System, a simple and user-friendly desktop nanolithography platform, the researchers were able to pattern multiple extracellular matrix proteins on a glass substrate at sub-cellular scales. NIH 3T3 fibroblasts and C2C12 myoblasts were differentially bound at the single cell level to the laminin and fibronectin features," said Dr. John Collins, Application Scientist at NanoInk and the lead author on the paper.

Microenvironmental control was demonstrated by regulating the shape of bound cells using various patterns of ECM proteins. Fibronectin features were deposited on glass surfaces in different geometric shapes and the attached cells were demonstrably constrained by pattern geometry. Precise control of cell cluster size was also demonstrated by varying the dimensions of the total patterned area. Cluster size is known to play a crucial role in cell function for many cell types.

"With the upcoming Analytical Biochemistry article, NanoInk demonstrates the ability to precisely co-culture multiple cell types within microns of each other. We expect that NanoInk systems will facilitate a better understanding of cellular behavior and enable many cell-biology applications where precise control of the cellular microenvironment is important," explained Warwick.

NanoInk's NanoFabrication Systems Division is dedicated to developing and supporting a wide range of biological applications for the NLP 2000 System. For sales information, please email: . More information is available at: www.nanoink.net/divisions.html#NanoFabrication.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life sciences, engineering, pharmaceutical, and education industries. Using Dip Pen Nanolithography (DPN), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create micro-and nanoscale structures from a variety of materials on a range of substrates. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop. Headquartered in the Illinois Science + Technology Park, north of Chicago, NanoInk currently has several divisions including the NanoFabrication Systems Division, the Nano BioDiscovery Division, the NanoProfessorTM Division and the NanoGuardianTM Division.

NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN, NanoGuardian and NanoProfessor are trademarks or registered trademarks of NanoInk, Inc.

For more information, please click here

Contacts:
Dresner Corporate Services
(312)780-7204


Caitlin Carr
Dresner Corporate Services
(312)780-7220

Copyright © NanoInk, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project