Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New world record for Danish nano researchers

Abstract:
Researchers at the Nano-Science Center at the University of Copenhagen have recently moved a big step closer to understanding chemical processes. Their world record comes from tracking the biggest contraction in an inorganic molecule ever.

New world record for Danish nano researchers

Copenhagen, Denmark | Posted on September 15th, 2011

The research group from the Centre for Molecular Movies in the Department of Chemistry have made their measurements of a molecule in solution and this implies that the results are useful for researchers, including those in the chemical industry.

"This new knowledge about how the molecules behave in solution is important because it broadens the standard for research into "wet" chemical processes. Our hope is, of course, that the results will ultimately contribute to an increased use of this method of analysis, both in the study of industrial processes and of those that take place in the human body", explains PhD Morten Christensen, who stresses that the measurements are made while the contractions are taking place.

The contractions in the molecules take place very quickly - within a billionth of a second in fact, but yet Morten Christensen and his colleagues can measure them. The measurements are made at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France in a collaboration between local researchers as well as researchers from the University of Copenhagen and DTU-Risø, among others. The results have just been published in the prestigious journal Inorganic Chemistry.

"We are using the technique of time dissolved X-ray scattering, which gives a "real time" image of the electron density of a molecule both before and after the contraction. We start the reaction with an ultra short laser flash and can then, using a particularly intense type of X-ray radiation, follow how two atoms of the element Iridium draw closer together. This is our background for measuring the large contraction that the molecule displays," explains Morten Christensen, who is proud to be a record holder.

To be more precise, the two atoms move 140 picometres (140 millionths of a micrometre) closer together. That is a 62% increase over the previous record from 2004, where an American research group was able to report that two Rhodium atoms moved 86 picometres closer together in response to a light pulse.

These are very small sizes and it goes so incredibly quickly that it can be difficult to relate to.

"Very roughly, our result corresponds to getting two beach balls of metal to move more than a metre in much less than a second - using only light. Any experience shows that such a thing is not possible in "our" reality, but luckily the rules are completely different when we are acting on the same scale as atoms and molecules. And this is one of the things that make nanotechnology so exciting," ends Morten Christensen.

####

For more information, please click here

Contacts:
Morten Christensen

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project