Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > High-performance devices using organic semiconductors

September 7th, 2011

High-performance devices using organic semiconductors

Abstract:
Synthetic control over the molecular constituents of organic semiconductors allows unprecedented control over their aggregate solid-state properties. Band-gap-like and band-edge-like properties can be tuned, seemingly at will (through the sweat and toil of brilliant synthetic chemists). This power comes, however, with a Faustian bargain. In contrast to inorganic semiconductors where atoms fully concede their individuality to collective quantum states, resulting in charge-carrier mobilities measuring in the hundreds to over a thousand square centimeters per volt second (cm2/V·s), the molecular individuality retained in organic semiconductors leads to localization and mobilities typically amounting to less than 3cm2/V·s. That creates a problem for applications requiring appreciable currents such as, for example, organic LEDs (OLEDs).

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project