Home > Press > Works Well on Paper: The Graphene Muscle
![]() |
Abstract:
It seems that there is a new application for graphene around every corner. In their new paper, Chen et al. show how magnetic graphene paper can act like an artificial muscle.
They fabricated electrochemical actuators based on flexible graphene paper. Electromechanical actuators can convert electrical energy into mechanical energy through stretching or contraction, behaving like artificial muscles. Such materials have a myriad of potential applications in healthcare and nanotechnology.
The graphene-paper actuators lengthen in response to applied voltage, due to changes in the carbon-carbon bond length. The team managed to increase the response by magnetizing the paper using Fe3O4 nanoparticles. The authors believe that the nanoparticles act as pillars between the sheets, increasing the surface area available for electrochemical actuation.
By experimenting with the composition of such constructs, the degree of response can hopefully be increased, realizing the potential of graphene in electrochemical actuation.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Y. Chen et al., Adv. Funct. Mater. ; DOI: 10.1002/adfm.201101072
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |