Home > Press > Engineers Discover Nanoscale Balancing Act That Mirrors Forces at Work in Living Systems
T.D.Nguyen, Glotzer Group, University of Michigan
Engineering researchers have discovered that under the right circumstances, basic atomic forces can be exploited to enable nanoparticles to assemble into superclusters that are uniform in size and share attributes with viruses. |
Abstract:
A delicate balance of atomic forces can be exploited to make nanoparticle superclusters that are uniform in size---an attribute that's important for many nanotech applications but hard to accomplish, University of Michigan researchers say.
The same type of forces are at work bringing the building blocks of viruses together, and the inorganic supercluster structures in this research are in many ways similar to viruses.
U-M chemical engineering professors Nicholas Kotov and Sharon Glotzer led the research. The findings are newly published online in Nature Nanotechnology.
In another instance of forces behaving in unexpected ways at the nanoscale, they discovered that if you start with small nanoscale building blocks that are varied enough in size, the electrostatic repulsion force and van der Waals attraction force will balance each other and limit the growth of the clusters. This equilibrium enables the formation of clusters that are uniform in size.
"The breakthrough here is that we've discovered a generic mechanism that causes these nanoparticles to assemble into near perfect structures," Glotzer said. "The physics that we see is not special to this system, and could be exploited with other materials. Now that we know how it works, we can design new building blocks that will assemble the same way."
The inorganic superclusters---technically called "supraparticles"---that the researchers created out of red, powdery cadmium selenide are not artificial viruses. But they do share many attributes with the simplest forms of life, including size, shape, core-shell structure and the abilities to both assemble and dissemble, Kotov said.
"Having these functionalities in totally inorganic system is quite remarkable," Kotov said. "There is the potential to combine them with the beneficial properties of inorganic materials such as environmental resilience, light adsorption and electrical conductivity."
Zhiyong Tang, a collaborating professor at the National Center of Nanoscience and Technology in China, said, "It is also very impressive that such supraparticles can be further used as the building blocks to fabricate three-dimensional ordered assemblies. This secondary self-assembly behavior provides a feasible way to obtain large-scale nanostructures that are important for practical application."
Kotov is currently working on "breeding" these supraparticles to produce synthetic fuels from carbon dioxide. The work also has applications in drug delivery and solar cell research and it could dramatically reduce the cost of manufacturing large quantities of supraparticles.
"By replicating the self-assembly processes that allow living organisms to grow and heal, we can simplify the production of many useful nanostructured systems from semiconductors and metals so much so that they can be made in any high school laboratory," Kotov said.
This research is funded by the Department of Defense, the National Science Foundation and the U.S. Army Research Office.
####
For more information, please click here
Contacts:
Nicole Casal Moore
(734) 647-7087
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||