Home > Press > Annual Global Nanotechnology Research Funding Running at $10 Billion Per Year
Abstract:
The world‚s governments currently spend $10 billion per year on nanotechnology research and development, with that figure set to grow by 20% over the next three years. By the end of 2011, the total government funding for nanotechnology research worldwide will be $65 billion, rising to $100 billion by 2014.
ELECTRONICS.CA PUBLICATIONS, the electronics industry market research and knowledge network, announces the availability of a new report entitled "Global Funding of Nanotechnologies 2011".
Every year, analysts undertake one of the world‚s most exhaustive searches into the global funding of nanotechnologies in order to identify not only where the dollars, euros and yen are being spent, but also to gain an unique insight into the trends shaping tomorrow‚s applications.
According to the report, annual global nanotechnology research funding is running at $10 billion per year. Since the US National Nanotechnology Initiative was announced in 2000, almost every developed and developing economy has initiated national nanotechnology programs. The world‚s governments currently spend $10 billion per year on nanotechnology research and development, with that figure set to grow by 20% over the next three years.
By the end of 2011, the total government funding for nanotechnology research worldwide will be $65 billion, rising to $100 billion by 2014. When figures for corporate research and various other forms of private funding are taken into account, which were thought to have surpassed government funding figures as far back as 2004, it is estimated that nearly a quarter of a trillion dollars will have been invested into nanotechnology by 2015.
In 2011, China's nanotech funding will have surpassed the US. With US government funding of nanotechnology receding slightly in 2011, this marks the first time in Purchasing Power Parity (PPP) estimates that China will spend more than the US in funding of nanotechnology. This year, according to estimates, in PPP terms China will spend US$2.25 billion in nanotechnology research while the US will spend US$2.18 billion. However, in real dollar terms, adjusted for currency exchange rates, China is only spending about US$1.3 billion to the US‚s $2.18 billion. But China is not the first country to outspend the United States. Japan and Russia have also managed to snatch a temporary lead before falling back. In absolute terms the United States still comprehensively outspends everyone else.
A clear trend is emerging: while nanotechnology research spending in Europe and North America is still rising, the fast growth rates are seen in Asia. Asian investment in nanotechnologies was poised to be largest in the world until RusNano was formed with its huge budget.
Simply looking at the amount of funding, whether in raw dollars or PPP corrected, fails to tell the whole story. Just because a country throws huge amounts of money at research it does not necessarily follow that the research conducted will have an impact on the economy. Some countries have excellent research institutions but little in the way of industry-academic cooperation, while others may have large companies who spend little on R&D. In order to obtain a more accurate picture of which economies are best placed to translate research funding into an economic benefit, data from the World Economic Forum‚s annual Global Competitiveness Report was used.
The rankings in the Global Competitiveness Report are calculated from both publicly available data and the Executive Opinion Survey, a comprehensive annual survey conducted by the World Economic Forum together with its network of Partner Institutes (leading research institutes and business organizations) in the countries covered by the report.
By combining macroeconomic data such as overall global competitiveness, quality of scientific institutions, capacity for innovation and levels of company spending on R&D with a number of other relevant factors we are able to produce an Emerging Technology Exploitation Factor, a measure of the economic impact of emerging technologies, and the efficiency and likelihood of translating technology funding into the economy.
In general, the US, Germany, Taiwan and Japan have the combination of academic excellence, technology hungry companies, skilled workforce and availability of early stage capital which ensures effective technology transfer.
While this measure holds true for a wide range of research based technologies, it takes no account of the level of nanotechnology funding which varies widely across different countries. When PPP corrected funding levels are factored in, the picture changes dramatically. Rebasing the Nanotech Impact Factor on the US (=100) gives a clearer picture of where researchers expect the technology to have the greatest impact. Of course in the US, the nanotechnology is in fierce competition with any number of other technologies, from synthetic biology to social networking, while in Russia it is a very high level stand alone project.
Given the overall global competitiveness and technological superiority of the United States, it is unsurprising that they top the list. The large amounts of R&D cash available in Russia and China has already put them on a par with US, while a second division appears including Japan, the European Union and major Asian economies. While the UK has a well-developed infrastructure, the relative lack of funding for nanotechnologies puts it in a third division along with India.
Details of the new report, table of contents and ordering information can be found on Electronics.ca Publications' web site. View the report: www.electronics.ca/publications/products/Global-Funding-of-Nanotechnologies-2011.html
####
For more information, please click here
Contacts:
Jennifer de Melo
Phone: 514-429-1520
pr.communications@electronics.ca
Copyright © Electronics.ca Publications
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |