Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new set of building blocks for simple synthesis of complex molecules

Photo by Becky Duffield

Graduate student Seiko Fujii and chemistry professor Martin Burke developed a novel class of chemical “building blocks” to more efficiently synthesize complex molecules, such as the antioxidant synechoxanthin.
Photo by Becky Duffield

Graduate student Seiko Fujii and chemistry professor Martin Burke developed a novel class of chemical “building blocks” to more efficiently synthesize complex molecules, such as the antioxidant synechoxanthin.

Abstract:
Assembling chemicals can be like putting together a puzzle. University of Illinois chemists have developed a way of fitting the pieces together to more efficiently build complex molecules, beginning with a powerful and promising antioxidant.

A new set of building blocks for simple synthesis of complex molecules

Champaign, IL | Posted on August 22nd, 2011

Led by chemistry professor Martin Burke, the team published its research on the cover of the chemistry journal Angewandte Chemie.

Burke's group is known for developing a synthesis technique called iterative cross-coupling (ICC) that uses simple, stable chemical "building blocks" sequentially joined in a repetitive reaction. With more than 75 of the building blocks available commercially, pharmaceutical companies and other laboratories use ICC to create complex small molecules that could have medicinal properties.

"There's pre-installed functionality and stereochemistry, so everything is set in the building blocks, and all you have to do is couple them together," said graduate student Seiko Fujii, the first author of the paper.

However, ICC has been limited to only molecules with one type of polarity. Now, the group has developed reverse-polarity ICC, which allows a chemist to optimize the ICC process to match the target molecules' electronic structure. The reversal in polarity enables a whole new class of building blocks, so researchers can synthesize molecules more efficiently and even construct molecules that standard ICC cannot.

For example, in the paper, the group used the new method to make synechoxanthin (pronounced sin-ecko-ZAN-thin), a molecule first isolated from bacteria in 2008 that shows great promise as an antioxidant. Studies suggest that synechoxanthin allows the bacteria that produce it to live and thrive in highly oxidative environments.

"We as humans experience a lot of oxidative stress, and it can be really deleterious to human health," said Burke, who also is affiliated with the Howard Hughes Medical Institute. "It can lead to diseases like cancer and atherosclerosis and neurodegenerative disorders. Evidence strongly suggests that synechoxanthin is a major part of the bacteria's solution to this problem. We're excited to ask the question, what can we learn from the bug? Can it also protect a human cell?"

Studies on the activity of synechoxanthin have been limited by the difficulty of extracting the molecule from bacterial cultures. Burke's group successfully synthesized it from a mere three types of readily available, highly stable, non-toxic building blocks. Thanks to the ease of ICC, they can produce relatively large quantities of synechoxanthin for study as well as derivatives to test against the natural product.

"Because this building-block-based design is inherently flexible, once we've made the natural product, we can make any derivative we want simply by swapping in one different building block, and then using the reverse-polarity ICC to snap them together," Burke said. "That's where synthesis is so powerful. Oftentimes, the cleanest experiment will require a molecule that doesn't exist, unless you can piece it together."

Researchers can also use blocks that have been "tagged" with a fluorescent or radioactive dye to make it easier to study the molecule and its activity. For example, Fujii next plans to synthesize both synechoxanthin and its apolar derivative with tags so that NMR imaging can reveal its location and orientation within a cell's membrane, possibly providing clues to its activity.

"After we have all these molecules in hand, we're really excited to test the antioxidant activity of them in a model membrane," Fujii said.

The National Institutes of Health and the Howard Hughes Medical Institute supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Martin Burke
217-244-8726

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Total Synthesis of Synechoxanthin through Iterative Cross-Coupling,” is available online.

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project