Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wyatt Technology’s FFF-MALS Provides Efficient Liposome Characterization

Abstract:
Wyatt's field flow fractionation (FFF) technology combined with multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS) enables rapid measurements of particle size, size distribution, particle count, as well as structure.

Wyatt Technology’s FFF-MALS Provides Efficient Liposome Characterization

Santa Barbara, CA | Posted on August 19th, 2011



Wyatt Technology Corporation, the world leader in instrumentation for absolute macromolecular characterization and software, announces that its field flow fractionation (FFF) technology combined with multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS) enables rapid measurements of particle size, size distribution, particle count, as well as structure. The combined system performs the most difficult sizing tasks in key areas of research and development in molecular biology and nanotechnology analyses, including the separation and characterization of liposomes and nanoparticles. This novel technology is illustrated in a new application note, titled "Liposome Characterization by FFF-MALS-QELS", which is available to download free-of charge via the website.

Liposomes are made of lipid bilayers. The size of a liposome ranges from some 20 nm up to several micrometers and may be composed of one or several concentric membranes. Liposomes possess unique properties owing to the amphiphilic character of the lipids, which make them suitable for drug delivery. Liposomes have attracted considerable attention as potential vehicles for drug delivery to selected cells or tissues in vivo. Therefore, it is of great importance to monitor liposome size and encapsulation during liposome research, formulation, manufacturing and quality control. However, conventional methods to characterize liposomes fail to perform efficiently and to cover the whole size of liposomes.

In this new application note, a method combining the Wyatt Technology Eclipse FFF system with a DAWN HELEOS and online QELS was used to analyze two liposome samples, one empty, and one filled. The results demonstrated that the combined method is capable of determining the degrees of encapsulation and the internal structures of the two liposomes without making assumptions.

The FFF system offers a number of distinct advantages over column separation techniques for many applications. The method is robust and easy to use, involving minimal shearing and enabling a broad separation range, from small proteins (nm) to large particles (µm). FFF is a non-destructive technique that achieves true particle size distribution and on-line absolute characterization of a wide range of solutions and dispersions. Combined with MALS detectors, the method can determine the absolute size and molar mass distributions as well as the structure and conformation of the particles.

For more information on Wyatt Technology's instruments or to obtain a copy of the new application note, please visit the website or email info[.]wyatt.com.

####

About Wyatt Technology
Based in Santa Barbara, California, Wyatt Technology (wyatt.com) is the world’s leading provider of instruments for absolute macromolecular characterization. With over 40 years’ experience developing multi-angle light scattering detectors, working with customers in the biotechnology, chemical, petrochemical, pharmaceutical, academic and government arenas, Wyatt prides itself on its entrepreneurial spirit, and the uniqueness of its offerings. The Company’s groundbreaking technology and uncompromising levels of customer care make Wyatt the global hallmark in its field.

For more information, please click here

Contacts:
Laura Browne
ScottPR.com
+44 1477 539539
wyatt[.]scottpr.com

Copyright © Newswire Today

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project