Home > Press > Wyatt Technology’s FFF-MALS Provides Efficient Liposome Characterization
Abstract:
Wyatt's field flow fractionation (FFF) technology combined with multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS) enables rapid measurements of particle size, size distribution, particle count, as well as structure.
Wyatt Technology Corporation, the world leader in instrumentation for absolute macromolecular characterization and software, announces that its field flow fractionation (FFF) technology combined with multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS) enables rapid measurements of particle size, size distribution, particle count, as well as structure. The combined system performs the most difficult sizing tasks in key areas of research and development in molecular biology and nanotechnology analyses, including the separation and characterization of liposomes and nanoparticles. This novel technology is illustrated in a new application note, titled "Liposome Characterization by FFF-MALS-QELS", which is available to download free-of charge via the website.
Liposomes are made of lipid bilayers. The size of a liposome ranges from some 20 nm up to several micrometers and may be composed of one or several concentric membranes. Liposomes possess unique properties owing to the amphiphilic character of the lipids, which make them suitable for drug delivery. Liposomes have attracted considerable attention as potential vehicles for drug delivery to selected cells or tissues in vivo. Therefore, it is of great importance to monitor liposome size and encapsulation during liposome research, formulation, manufacturing and quality control. However, conventional methods to characterize liposomes fail to perform efficiently and to cover the whole size of liposomes.
In this new application note, a method combining the Wyatt Technology Eclipse FFF system with a DAWN HELEOS and online QELS was used to analyze two liposome samples, one empty, and one filled. The results demonstrated that the combined method is capable of determining the degrees of encapsulation and the internal structures of the two liposomes without making assumptions.
The FFF system offers a number of distinct advantages over column separation techniques for many applications. The method is robust and easy to use, involving minimal shearing and enabling a broad separation range, from small proteins (nm) to large particles (µm). FFF is a non-destructive technique that achieves true particle size distribution and on-line absolute characterization of a wide range of solutions and dispersions. Combined with MALS detectors, the method can determine the absolute size and molar mass distributions as well as the structure and conformation of the particles.
For more information on Wyatt Technology's instruments or to obtain a copy of the new application note, please visit the website or email info[.]wyatt.com.
####
About Wyatt Technology
Based in Santa Barbara, California, Wyatt Technology (wyatt.com) is the world’s leading provider of instruments for absolute macromolecular characterization. With over 40 years’ experience developing multi-angle light scattering detectors, working with customers in the biotechnology, chemical, petrochemical, pharmaceutical, academic and government arenas, Wyatt prides itself on its entrepreneurial spirit, and the uniqueness of its offerings. The Company’s groundbreaking technology and uncompromising levels of customer care make Wyatt the global hallmark in its field.
For more information, please click here
Contacts:
Laura Browne
ScottPR.com
+44 1477 539539
wyatt[.]scottpr.com
Copyright © Newswire Today
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||