Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bone Marrow Gets Targeted Drug Delivery

Abstract:
Bone marrow, the spongy, flexible tissue found in the center of bones, is essential for the production of blood cells. There are multiple diseases and infections that involve the bone marrow, but current strategies to treat these disorders involve intravenous delivery of drugs are not specifically targeted to the diseased marrow. The healthy cells in the body are also affected, leading to toxic side effects. Thus, there is an urgent need to develop targeted drug delivery strategies to diseased cells in the bone marrow.

Bone Marrow Gets Targeted Drug Delivery

Germany | Posted on August 19th, 2011

Recently, efforts in development of targeted drug delivery has heavily involved nanotechnology, which uses the strategy of active targeting. Porous silicon is an attractive material because of its biocompatibility and ability to carry various agents, from proteins to drugs and nanoparticles. In a new study featured in Advanced Healthcare Materials, Mauro Ferrari, David Gorenstein and their colleagues developed a system comprising nanoporous silicon particles and a cell adhesion molecule that specifically targets bone marrow and delivers a high amount of nanoparticles containing therapeutic drugs to the bone marrow tissue. The cell adhesion molecule, E-selectin, has recently shown promise as a biological target for the delivery of drug carriers to the bone marrow endothelium. The researchers attached a ligand that has a very high affinity to E-selectin to a porous silicon particle and successfully demonstrated its ability to deliver therapeutic liposomes.

These findings have the potential to further develop techniques to deliver currently available drugs specifically to the bone marrow, decreasing their side effects and improving their overall effectiveness in treating bone marrow associated disorders.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A. P. Mann et al., Adv. Mater., 2011 ; DOI: 10.1002/adma.201101541

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project