Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reviewed: Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics

Abstract:
Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics
Elena Sheka
Hardcover
328 pages
US $120.16

reviewed by Professor Mildred Dresselhaus, MIT

Reviewed: Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics

Germany | Posted on August 18th, 2011

Fullerenes were discovered in 1985 by Curl, Kroto and Smalley. In "C60: Buckminsterfullerene" [Kroto et al., Nature, 318, 162 (1985)] they discussed the observation of a highly symmetrical molecule composed of 60 carbon atoms and having full Ih icosahedral symmetry. At the time this solved the mystery about the high probability of observing cluster sizes of C60 in a plot of the probability of observation vs. cluster size published in 1984 by Rohlfing et al. from the EXXON research laboratory. The most convincing identification of the C60 molecule came from the characteristic features in the infrared spectra of this molecule. The novelty of the structure and the interesting chemistry of this molecule produced an explosion of activity over the following decade. The invasion of the carbon literature by carbon nanotubes started in the early 1990s and for a brief time took center stage. Concurrently, fullerene research matured and entered a new phase with a large emphasis on applications, with relatively less publicity given to the developments in fullerene research.

The book by Elena Sheka on fullerenes thus comes at a time when a considerable amount of research has been reported in journals but little has been synthesized into a scholarly book form. This volume focuses strongly on providing a theoretical approach to the subject, giving strong emphasis to Russian work and in particular to the contributions to the field made by the author, Elena Sheka, who has a strong background in theoretical solid state physics and spectroscopy. Her own research spans many research topics but has in recent years focused on the vibrational spectroscopy of nanoparticles, computational nanotechnology, quantum calculations for fullerenes, carbon nanotubes and graphene.

This fullerene book is written for readers who already have considerable familiarity with fullerenes and is aimed mainly at an audience interested in calculations of fullerene properties. It is not written as a text book to introduce a newcomer to the field, nor does it review recent developments in the fullerene field and nor does it summarize overall research progress and product development for fullerenes in the last two decades. The opening chapters of the book lay the foundations for the later chapters of the book. A large number of terms and abbreviations are introduced early in the book and a glossary for these abbreviations would help the reader navigate through the text. The importance of electronic behavior and donor/acceptor doping is emphasized together with symmetry and broken symmetry. Early on, Sheka develops an unrestricted broken symmetry approach to the calculation of fullerene energetics in preparation for using her own approach to the calculation of physical phenomena connected with the doping of fullerenes by donor, acceptor and magnetic species, as is developed subsequently in the book. Spin considerations are incorporated into the book at an early stage. The basic icosahedral symmetry of fullerenes is emphasized and introduced at an early stage in the book and is built upon in later chapters. Some short coverage of the historical background of fullerene research is given. Emphasis is given to bond length calculations for single and double bonds and to a comparative discussion of results obtained using different calculational techniques. The reader will appreciate the good coverage given to Russian work in this field. The book introduces a continuous symmetry measure in terms of a mathematical function which allows an analysis to be made of the departure of each vertex of the C60 molecule from its theoretical icosahedral location. The use of such a function was new to this reader of the book and seems like an excellent, simple, and quantitative way to discuss departures for icosahedral symmetry that may be introduced by external perturbations, such as electric or magnetic fields, stress and strain imposed on the C60 molecule, intermolecular forces between fullerene molecules, the insertion of an external species into the fullerene to form an endofullerene, and doping by external species as discussed explicitly in the later chapters of the book.

The book then proceeds to consider the interaction of fullerenes with other chemical species, starting in Chapter IV, by laying down some principles involved in fullerene chemistry, while considering interactions with fluorine, the most strongly interacting species with carbon that often produces some unusual reaction products. The following chapter considers interactions with hydrogen which is the basis of organic chemistry and therefore is of great interest, particularly because hydrogen is also a special species regarding intercalation reactions. In this context it should be noted that hydrogen by itself will not intercalate into graphite, but requires a chaperon species to do so. The two additional chapters devoted to chemistry consider fullerene reactions with nitrogen in terms of amines and then with all other species. Two additional applications chapters on nanomedicine and nanophotonics will be of considerable interest to readers, especially the effort to relate the discussion on nanophotonics to chemical, medical and optical applications.

Carbon materials in general are not considered to be chemically reactive so the two chapters and concluding summary of this book is interesting in providing ideas from a theoretical standpoint to enhance the chemical reactivity of carbon nanotubes and graphene as well as composites of nanotubes and graphene that could have broader interest. Since the magnetism of graphene edges has been a hot current topic, it was of interest to see this topic included in the book. The size dependence of the magnetic properties of graphitic nanoribbones, according to width and layer number dependences, is a research topic of current interest as mentioned in the book. The comments about why Silicine (Si60) is not a stable molecule were very interesting to this reader, as were the discussions of BNC related fullerenes. The current interest in planar BNC inspired by BN/C graphene-related composites should give new stimulus to consideration of BN/C hybrid fullerene structures. This reader would have been interested in hearing more about the potential for fullerenes to be used widely in commercial scale energy-based applications, as in solar cells.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project