Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Suitcase-sized detector can ID anthrax in one hour

Kent Loeffler, Cornell University
This photograph shows the device's microfluidic chip, which measures approximately one centimeter by 3 centimeters and integrates sample purification and real-time PCR analysis chambers.
Kent Loeffler, Cornell University
This photograph shows the device's microfluidic chip, which measures approximately one centimeter by 3 centimeters and integrates sample purification and real-time PCR analysis chambers.

Abstract:
A portable device can detect the presence of the anthrax bacterium in about one hour from a sample containing as few as 40 microscopic spores, report Cornell and University of Albany researchers who invented it. The device could provide early detection in the case of an anthrax attack, saving many lives.

Suitcase-sized detector can ID anthrax in one hour

Ithaca, NY | Posted on July 29th, 2011

The basic design, which is small enough to fit in the overhead compartment of an airplane, potentially could be tailored to detect countless other pathogens, such as salmonella, or be used in the field for DNA forensics.

"It was built with the notion of being portable," said Carl Batt, Liberty Hyde Bailey Professor in the Department of Food Science at Cornell and a co-author of the paper published in July in the International Journal of Biomedical Nanoscience and Nanotechnology (Vol. 2, No. 2). Nathaniel Cady, Ph.D. '06, a nanoscale engineer at the University of Albany, is the paper's lead author.

Seven years in the making, the detector requires that a sample be inserted into the device. From there the machine automatically recovers cells, collects and purifies DNA and then conducts real-time polymerase chain reactions (PCR) to identify if anthrax is present. PCR can amplify extremely small amounts of DNA and is a well-established platform for rapidly detecting biological material.

The researchers began by acquiring what amounts to a small suitcase-sized plastic box with the notion that, "whatever we do, it has to fit in here. It was a line in the sand, an engineering challenge where everything had to fit in the box," Batt said.

The shape of a heavily reinforced suitcase, the device is complete with pumps, heating and cooling elements, and optical and computational circuitry.

By tailoring different assays to the portable real-time PCR platform, the device could be used for a variety of applications in addition to anthrax detection, such as at a crime scene for forensics. For example, if detectives were to find a sample they believe belongs to a perpetrator, they might use such a device to rapidly and broadly determine the gender or eye color of the suspect.

The researchers are currently working to develop new strategies for pumping fluids in the device, a system that now occupies the majority of the space and most of the power. Novel pumping systems based on silicon processing are being created, which could allow engineers to fabricate most of the components of the system on a single chip.

The research was funded by KRAFT foods, the U. S. Department of Agriculture, National Institute of Justice and Food and Drug Administration.

####

For more information, please click here

Contacts:
Krishna Ramanujan

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Food/Agriculture/Supplements

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project