Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Abstract:
At an atomic scale, the tiniest bridge of gold -- that made of a single atom -- is actually the strongest, according to new research by engineers at the University at Buffalo's Laboratory for Quantum Devices.

Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Buffalo, NY | Posted on July 16th, 2011

The counterintuitive finding is the result of experiments probing the characteristics of atomic-scale necks of gold that formed when the pointed, gold tip of a cantilever was pushed into a flat, gold surface. An examination of these tiny, gold bridges revealed that they were stiffest when they comprised just a single atom.

The study was published in June in Physical Review B by a trio of UB researchers: postdoctoral fellow Jason Armstrong and professors Susan Hua and Harsh Deep Chopra, all in UB's Department of Mechanical and Aerospace Engineering. Support for the work came from National Science Foundation grants No. DMR-0706074 and No. DMR-0964830.

As engineers look to build devices such as computer circuits with ever-smaller parts, it is critical to learn more about how tiny components comprising a single atom or a few atoms might behave. The physical properties of atomic-scale gadgets differ from those of larger, "bulk" counterparts.

"Everyday intuition would suggest that devices made of just a few atoms would be highly susceptible to mechanical forces," the team said. "This study finds, however, that the ability of the material to resist elastic deformation actually increases with decreasing size."

Another observation the team made while studying the tiny gold necks: abrupt atomic displacements that occur as the gold tip and surface are drawn apart are not arbitrary, but follow well-defined rules of crystallography. More scientific highlights of the work are summarized in the Physical Review Focus of the American Physical Society at http://focus.aps.org/story/v27/st24.

UB's Laboratory for Quantum Devices, led by Chopra and Hua, works on mapping the evolution of various physical properties of materials -- including mechanical, magnetic and magneto-transport behavior -- as sample sizes grow from a single atom to bulk.

This complicated task requires technology capable of capturing a single or few atoms between probes, and further pushing and pulling on the atoms to study their response.

The sophisticated technology that Armstrong, Hua and Chopra invented and built to accomplish the research was recently licensed to Precision Scientific Instruments Inc., a Western New York start-up company founded by the leaders of Murak & Associates LLC, a management consulting practice; SoPark Corporation, an electronics service manufacturer (ESM); and The PCA Group, Inc., a consulting firm that offers total technology solutions.

"The instruments and methods are incredibly precise and capable of deforming the sample at the picometer scale (about 100 times smaller than an atom), which means literally stretching the bond lengths, and simultaneously measuring the forces at the piconewton level, as well as various other properties. As a very broad perspective, by enabling researchers to probe the very small, the technology could speed advances in fields ranging from satellite communications to health care," said Gerry Murak, president and cofounder of Precision Scientific Instruments, Inc.

"Small is exciting, and atomic scale devices are the new frontier of technology. Metrology systems capable of probing the behavior of atomic-scale devices are sorely needed, and this technology gives us a unique platform," Murak said.

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project