Home > Press > Department of Energy's Oak Ridge National Laboratory: CHEMISTRY – Clean energy production . . .
Abstract:
Enterprises from energy production to environmental cleanup depend on chemistry. A multi-institutional team has generated 70 publications in three years to demonstrate the prodigious scientific output of the world's fastest simulations exploring a continuum from chemistry to materials science.
Many have graced the covers of prestigious journals and dealt with topics from production of hydrogen for clean energy to development of graphene nanoribbons for power delivery. "Our long-term goal is enabling the design of new generations of clean and sustainable technologies to produce, transmit, and store energy," said team leader Robert Harrison, a computational chemist at Oak Ridge National Laboratory and the University of Tennessee who directs the Joint Institute for Computational Sciences, a partnership between the two organizations. Through the Innovative and Novel Computational Impact on Theory and Experiment program, the researchers have been awarded more than 100 million processor hours since 2008. At the Oak Ridge Leadership Computing Facility, they calculate the electronic structures of large molecules and surfaces. The findings inform the development of processes, such as biomass conversion and fuel combustion, and products, such as batteries, fuel cells and capacitors.
####
For more information, please click here
Contacts:
Dawn Levy
(865) 576-6448
Ron Walli
(865) 576-0226
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |