Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing red? Making carbon nanotubes clearer to the naked eye

Abstract:
If you were to look at a carbon nanotube with the naked eye you wouldn't see much more than black powder, but now a team of EU-funded scientists has developed a novel way of making these multi-purpose nanotechnology building blocks more visible.

Seeing red? Making carbon nanotubes clearer to the naked eye

Brussels, Belgium | Posted on July 8th, 2011

Carbon nanotubes are structures that resemble lots of honeycomb-shaped hexagons all rolled-up into a seamless cylindrical tube. It is difficult to make them emit light as they are excellent electrical conductors and capture the energy from other luminescent chemical species placed nearby.

Yet now the pan-European team has worked out ways to make use of the carbon nanotubes' relatively high surface area, which allows many other molecules, including those capable of emitting light, to attach themselves to it. These molecules take the form of chemicals that are able to display red light.

As part of the 'Cavity-confined Luminophores for advanced photonic materials: A training action for young researchers' (FINELUMEN) project, which received a boost of EUR 3.62 million under the 'People' Theme of the Seventh Framework Programme (FP7), researchers from Belgium, France, Germany, Hungary, Italy and Poland have been preparing and characterising luminescent materials in which suitably designed organic and inorganic luminophores are encapsulated within nano-containers (i.e. carbon nanotubes and coordination cages) in which they can preserve and even improve their emission output.

The project's ultimate goal is to create a library of luminescent modules emitting throughout the VIS-NIR region for producing superior functional hybrid materials. The emission colour tunability is defined by the emitting guest, while the versatility in the final application is controlled via tailored chemical functionalisation of the host.

'We take part in the project as a research group specialising in studies on lanthanide compounds. We decided to combine their high luminescent properties with excellent mechanical and electrical characteristics of nanotubes,' says Professor Marek Pietraszkiewicz from Warsaw's Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS), one of the FINELUMEN consortium partners.

However, the team discovered that it was not just a simple case of sticking on these light-emitting molecules, as researcher Valentina Utochnikova from IPC PAS explains:
'Attachment of light-emitting complexes directly to the nanotube is, however, not favourable, because the latter, as a black absorber, would highly quench the luminescence.'

To combat this unwanted light absorption, the team first subjected the carbon nanotubes to a thermal reaction at 140 to 160 degrees Celsius in a solution of ionic liquid modified with a terminal azido function. The reaction yields nanotubes coated with molecules acting as anchors-links. On one side, the anchors are attached to the surface of the nanotube, and on the other they can attach molecules capable of displaying visible light. The free terminal of each link bears a positive charge.

So prepared nanotubes are subsequently transferred into another solution containing a negatively charged lanthanide complex -- tetrakis-(4,4,4-trifluoro-1-(2-naphtyl-1,3-butanedionato)europium.

'Lanthanide compounds contain elements from the VI group of the periodic table and are very attractive for photonics, as they are characterised by a high luminescence quantum yield and a high colour purity of the emitted light,' comments Valentina Utochnikova.

After dissolving in solution, negatively charged europium complexes are spontaneously caught by positively charged free terminals of anchors attached to nanotubes due to electrostatic interaction. Subsequently, each nanotube is durably coated with molecules capable of emitting visible light. Once the reaction is completed the modified nanotubes are then washed and dried.

The final result is a sooty powder that when exposed to UV radiation emits red light thanks to the lanthanide complexes anchored to the carbon nanotubes.

By making these materials as versatile as possible there is huge potential for their increased use in bioimaging, optoelectronic devices and sensors.

The FINELUMEN project brings together industry partners, small and medium sized enterprises (SMEs) and research organisations, and is part of the EU's overall strategy of ensuring European competitiveness in a huge growth area where the boundaries of chemistry, physics and engineering meet.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project