Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Just Add Water and... Treat Brain Cancer: Freeze-dried gene therapy system avoids virus, potential complications

Brain cancer cells produce a green fluorescent protein. DNA encoded to produce the protein was delivered to the cancer cells by new freeze-dried nanoparticles produced by Johns Hopkins biomedical engineers.
Stephany Tzeng
Brain cancer cells produce a green fluorescent protein. DNA encoded to produce the protein was delivered to the cancer cells by new freeze-dried nanoparticles produced by Johns Hopkins biomedical engineers.

Stephany Tzeng

Abstract:
Researchers at the Johns Hopkins University School of Medicine have developed a technique that delivers gene therapy into human brain cancer cells using nanoparticles that can be freeze-dried and stored for up to three months prior to use.

Just Add Water and... Treat Brain Cancer: Freeze-dried gene therapy system avoids virus, potential complications

Baltimore, MD | Posted on July 8th, 2011

The shelf-stable particles may obviate the need for virus-mediated gene therapy, which has been associated with safety concerns. The report appears in the August issue of Biomaterials.

"Most nonviral gene therapy methods have very low efficacy," says Jordan Green, Ph.D., an assistant professor of biomedical engineering at Johns Hopkins. "Nanoparticle-based gene therapy has the potential to be both safer and more effective than conventional chemical therapies for the treatment of cancer."

To develop the nanoparticle, Green's team started with store-bought small molecules and systematically mixed combinations together to generate chemical reactions that resulted in different polymers. They then mixed DNA that encodes a glowing protein with each different polymer to allow the DNA to bind to the polymers and form nanoparticles. Each different sample was added to human brain tumor cells and human brain tumor stem cells. After 48 hours, the team examined and counted how many cells glowed from having taken up the nanoparticles and made the glowing protein encoded by the introduced DNA.

The team rated success by counting how many cells survived and what percentage of those cells glowed.

Of the many combinations they tested, the researchers found that one particular formulation of so-called poly(beta-amino ester) nanoparticles did particularly well at getting into both glioblastoma and brain tumor stem cells. The researchers then freeze-dried these nanoparticles and stored them at different temperatures (freezer, refrigerator and room temperature) for different lengths of time (one, two and up to three months), and then retested their ability to get into cells. According to Green, after six months in storage, the effectiveness dropped by about half, but they found that up to three months of storage at room temperature there was virtually no change in effectiveness.

Furthermore, the team found that certain nanoparticles had a particular affinity for brain tumor cells over healthy brain cells.

"I could imagine particles based on this technology being used in conjunction with, and even instead of brain surgery," says Alfredo Quinones-Hinojosa, M.D., Ph.D., an associate professor of neurosurgery and oncology at Johns Hopkins. "I envision that one day, as we understand the etiology and progression of brain cancer, we will be able to use these nanoparticles even before doing surgery-how nice would that be? Imagine avoiding brain surgery altogether."

This study was funded by the Institute for NanoBioTechnology at The Johns Hopkins University, the Maryland Stem Cell Research Fund, National Institutes of Health, the Howard Hughes Medical Institute and the Robert Wood Johnson Foundation.

Authors on the paper are Stephany Tzeng, Hugo Guerrero-Cazares, Elliott Martinez, Joel Sunshine, Alfredo Quinones-Hinojosa and Jordan Green, all of Johns Hopkins.

####

For more information, please click here

Contacts:
Media Contacts:
Mary Spiro
410-516-4802


Vanessa McMains
410-502-9410


Audrey Huang
410-614-5105


Maryalice Yakutchik
443-287-2251

Copyright © Johns Hopkins University School of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute for NanoBioTechnology

Department of Biomedical Engineering

Jordan Green

Alfredo Quinones-Hinojosa

Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project