Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene: What Can Go Wrong? New Studies Point to Wrinkles, Process Contaminants

Abstract:
Using a combination of sophisticated computer modeling and advanced materials analysis techniques at synchrotron laboratories, a research team led by the University at Buffalo (UB) and including the National Institute of Standards and Technology (NIST), the Molecular Foundry at Lawrence Berkeley National Laboratory and SEMATECH* has demonstrated how some relatively simple processing flaws can seriously degrade the otherwise near-magical electronic properties of graphene.

Graphene: What Can Go Wrong? New Studies Point to Wrinkles, Process Contaminants

Gaithersburg, MD | Posted on July 7th, 2011

Their new paper** demonstrates how both wrinkles in the graphene sheet and/or chance contaminants from processing—possibly hiding in those folds—disrupt and slow electron flow across the sheet. The results could be important for the design of commercial manufacturing processes that exploit the unique electrical properties of graphene. In the case of contaminant molecules at least, the paper also suggests that heating the graphene may be a simple solution.

Graphene, a nanostructured material that is essentially a one-atom thick sheet of carbon atoms arranged in a hexagonal pattern, is under intense study because of a combination of outstanding properties. It's extremely strong, conducts heat very well, and has high electrical conductivity while being flexible and transparent. Graphene's electrical properties, however, apparently depend a lot on flatness and purity.

Using X-rays, the UB team produced images that show the electron "cloud" lining the surface of graphene samples—the structure responsible for the high-speed transit of electrons across the sheet—and how wrinkles in the sheet distort the cloud and create bottlenecks. Spectrographic data showed anomalous "peaks" in some regions that also corresponded to distortions of the cloud. NIST researchers, using their dedicated materials science "beam line" at the National Synchrotron Light Source (NSLS),*** contributed a sensitive analysis of spectroscopic data confirming that these peaks were caused by chemical contaminants that adhered to the graphene during processing.

Significantly, the NIST synchrotron methods group was able to make detailed spectroscopic measurements of the graphene samples while heating them, and found that the mysterious peaks disappeared by the time the sample reached 150 degrees Celsius. This, according to Dan Fischer, leader of the NIST group, showed both that those particular disturbances in the electron cloud were due to contaminants, and that there is a way to get rid of them. "They're not chemical bound, they're just physically absorbed on the surface, and that's an important thing. You have a prescription for getting rid of them," Fischer said.

"When graphene was discovered, people were just so excited that it was such a good material that people really wanted to go with it and run as fast as possible," said Brian Schultz, one of three UB graduate students who were lead authors on the paper, "but what we're showing is that you really have to do some fundamental research before you understand how to process it and how to get it into electronics."

"This is the practical side of using graphene," agrees Fischer, "It has all these remarkable properties, but when you go to actually try to make something, maybe they stop working, and the question is: why and what do you do about it? These kinds of extremely sensitive, specialized techniques are part of that answer."

For more on the study, see the UB June 28, 2011, news announcement "Researchers Image Electron Clouds on the Surface of Graphene, Revealing How Folds in the Remarkable Material Can Harm Conductivity" at www.buffalo.edu/news/12673.

* SEMATECH is a nonprofit research consortium that advances the U.S. semiconductor industry.

** B.J. Schultz, C. J. Patridge, V. Lee, C. Jaye, P.S. Lysaght, C. Smith, J. Barnett, D.A. Fischer, D. Prendergast and S. Banerjee. Imaging local electronic corrugations and doped regions in graphene. Nature Communications. V2, 372. Published on-line June 28, 2011. doi:10.1038/ncomms1376.

*** The NSLS is located at the Brookhaven National Laboratory.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum
301-975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project