Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CNST Researchers Develop Integrated Nanomechanical Sensor for Atomic Force Microscopy



Scanning electron micrograph of the cantilever-microdisksystem.
The image has a calculated z-component of the magnetic
field overlaid on the structure.
Scanning electron micrograph of the cantilever-microdisksystem. The image has a calculated z-component of the magnetic field overlaid on the structure.

Abstract:
The atomic force microscope (AFM) is an important tool for nanoscale surface metrology. Typical AFMs map local tip-surface interactions by scanning a flexible cantilever probe over a surface. They rely on bulky optical sensing instrumentation to measure the motion of the probe, which limits the sensitivity, stability, and accuracy of the microscope, and precludes the use of probes much smaller than the wavelength of light. As reported in Nano Letters,* CNST researchers have fabricated a novel integrated sensor combining a nanomechanical cantilever probe with a high sensitivity nanophotonic interferometer on a single silicon chip. Replacing the bulky laser detection system allowed them to build cantilevers orders of magnitude smaller than those used in conventional AFMs.

CNST Researchers Develop Integrated Nanomechanical Sensor for Atomic Force Microscopy

Gaithersburg, MD | Posted on June 6th, 2011

Because each of these smaller structures has an effective mass less than a picogram, the detection bandwidth is dramatically increased, reducing the system response time to a few hundred nanoseconds. While probe stiffness was kept comparable to conventional microcantilevers in order to maintain high mechanical gain (how much the tip moves when it senses a force change), the probe size was reduced to a mere 25 µm in length, 260 nm in thickness, and only 65 nm in width. Readout is based on "cavity optomechanics", with the probe fabricated adjacent to a microdisk optical cavity at a gap of less than 100 nm. Due to this close separation, light circulating within the cavity is strongly influenced by the motion of the probe tip. The cavity has a high optical quality factor (Q), meaning that the light makes tens of thousands of round-trips inside the cavity before leaking out of it, all the time accumulating information about the probe's position. The combination of small probe-cavity separation and high Q gives the device sensitivity to probe motion at less than 1 fm/√Hz, while the cavity is able to sense changes in probe position with high bandwidth. The entire device is nanofabricated as a single, monolithic unit on a silicon wafer. It is therefore compact (chip-scale), self-aligned, and stable. Fiber optic waveguides couple light into and out of the sensor, so that it can be easily interfaced with standard optical sources and detectors. Finally, through simple changes to the probe geometry, the mechanics of the probe tip can be greatly varied, allowing for the different combinations of mechanical gain and bandwidth needed for a variety of AFM applications.

*Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, K. Srinivasan, H. Miao, M.T. Rakher, M. Davanco, and V. Aksyuk, Nano Letters 11, 791-797 (2011).

####

About National Institute of Standards and Technology (NIST)
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Kartik Srinivasan
301-975-5938

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project