Home > Press > NSF grant to fund theoretical models of thermal conductivity
![]() |
Abstract:
A nearly $200,000 National Science Foundation grant will fund continued Cornell research on theory-based calculations of how certain materials conduct heat, which could lead to better engineered materials and devices.
Derek Stewart, senior research associate with the Cornell NanoScale Science and Technology facility, received the grant in collaboration with David Broido, professor of physics at Boston College.
Accurate theoretical modeling of thermal transport in materials due to lattice vibrations is essential to numerous fields including microelectronics cooling, thermal barrier coatings and thermoelectronics.
At Cornell, researchers will focus on first-principles calculations of thermal conductivity in such crystalline materials as lead chalcogenides and certain classes of semiconductors, and also recently developed nanostructured semiconductor alloys that contain embedded nanoparticles.
The materials are characterized by their exceptionally low thermal conductivities, a key requirement for thermoelectric devices that convert heat into electricity. The planned studies should help provide insight into the underlying mechanisms for this low thermal conductivity and could identify ways to reduce it even further.
The research could eventually contribute to the development of new, highly efficient engineered materials.
####
For more information, please click here
Contacts:
Anne Ju
amj8@cornell.edu
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |