Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Single atom stores quantum information: A powerful quantum computer could be designed with an incredibly tiny memory

One single atom as data memory: Researchers at the Max Planck Institute of Quantum Optics wrote quantum information into a rubidium atom between two mirrors and read it out again after a certain storage time.

© Andreas Neuzner
One single atom as data memory: Researchers at the Max Planck Institute of Quantum Optics wrote quantum information into a rubidium atom between two mirrors and read it out again after a certain storage time.

© Andreas Neuzner

Abstract:
A data memory can hardly be any smaller: researchers working with Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have stored quantum information in a single atom. The researchers wrote the quantum state of single photons, i.e. particles of light, into a rubidium atom and read it out again after a certain storage time. This technique can be used in principle to design powerful quantum computers and to network them with each other across large distances.

Single atom stores quantum information: A powerful quantum computer could be designed with an incredibly tiny memory

Munich, Germany | Posted on May 3rd, 2011

Quantum computers will one day be able to cope with computational tasks in no time where current computers would take years. They will take their enormous computing power from their ability to simultaneously process the diverse pieces of information which are stored in the quantum state of microscopic physical systems, such as single atoms and photons. In order to be able to operate, the quantum computers must exchange these pieces of information between their individual components. Photons are particularly suitable for this, as no matter needs to be transported with them.

Particles of matter however will be used for the information storage and processing. Researchers are therefore looking for methods whereby quantum information can be exchanged between photons and matter. Although this has already been done with ensembles of many thousands of atoms, physicists at the Max Planck Institute of Quantum Optics in Garching have now proved that quantum information can also be exchanged between single atoms and photons in a controlled way.

Using a single atom as a storage unit has several advantages - the extreme miniaturization being only one, says Holger Specht from the Garching-based Max Planck Institute, who was involved in the experiment. The stored information can be processed by direct manipulation on the atom, which is important for the execution of logical operations in a quantum computer. "In addition, it offers the chance to check whether the quantum information stored in the photon has been successfully written into the atom without destroying the quantum state," says Specht. It is thus possible to ascertain at an early stage that a computing process must be repeated because of a storage error.

The fact that no one had succeeded until very recently in exchanging quantum information between photons and single atoms was because the interaction between the particles of light and the atoms is very weak. Atom and photon do not take much notice of each other, as it were, like two party guests who hardly talk to each other, and can therefore exchange only a little information. The researchers in Garching have enhanced the interaction with a trick. They placed a rubidium atom between the mirrors of an optical resonator, and then used very weak laser pulses to introduce single photons into the resonator. The mirrors of the resonator reflected the photons to and fro several times, which strongly enhanced the interaction between photons and atom. Figuratively speaking, the party guests thus meet more often and the chance that they talk to each other increases.

The photons carried the quantum information in the form of their polarization. This can be left-handed (the direction of rotation of the electric field is anti-clockwise) or right-handed (clock-wise). The quantum state of the photon can contain both polarizations simultaneously as a so-called superposition state. In the interaction with the photon the rubidium atom is usually excited and then loses the excitation again by means of the probabilistic emission of a further photon. The Garching-based researchers did not want this to happen. On the contrary, the absorption of the photon was to bring the rubidium atom into a definite, stable quantum state. The researchers achieved this with the aid of a further laser beam, the so-called control laser, which they directed onto the rubidium atom at the same time as it interacted with the photon.

####

For more information, please click here

Contacts:
Prof. Dr. Dr. habil. Gerhard Rempe
Max Planck Institute of Quantum Optics, Garching
Phone: +49 89 32905-701
Fax: +49 89 32905-311
Email:

Copyright © Max Planck Institute of Quantum Optics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project