Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthetic hydrogels improve testing of active substances in 3-D cell culture

Abstract:
The life science company Cellendes in Germany has developed synthetic hydrogels that make it possible to culture cells in three-dimensional environments. Their invention has fundamental advantages over other hydrogels for three-dimensional cultivation, also on the market.

Synthetic hydrogels improve testing of active substances in 3-D cell culture

Italy | Posted on May 3rd, 2011

Many researchers culture cells in flat dishes, two-dimensional culture systems. A disadvantage is that the cells behave differently than they would in a living organism. To offer an environment that resembles the living organism better, Dr. Birgitte Angres and Dr. Helmut Wurst have developed synthetic transparent hydrogels for three-dimensional applications within their life science company Cellendes (Cell-Environment-Design).

"Compared to other hydrogels on the market ours can be much easier modified with bioactive factors such as peptides right at the bench. So customers can choose which peptides they want to include in their culture. They can either purchase them from us or have their own being synthesized. Secondly, the concentration of bioactive factors, such as peptides, in our gels can be much higher than in the competitors' gels," Dr. Helmut Wurst said.

The hydrogels are made in a few minutes by combining two solutions in the form of an activated polymer and a cross-linking agent. Through a chemical reaction the polymers use the agent to link themselves together and a three-dimensional network, where the average pore is about eight nanometers wide, forms. Before the linking occurs it is possible to bind biofactors to the polymer and mix in cells.

The biggest challenge, from a technical point of view, during the development of the hydrogels has been to make these components reproducible. "You can do it once and then the next time maybe a little bit different, but you want to make a reproducible quality of your different components and I think that is the biggest problem," Wurst said.

At the moment Wurst and his colleagues are trying to make it possible to store and ship the gels at room temperature and not in refrigerated conditions, to save costs in shipping. They also want to make the gels form a little bit slower. "The gels form so fast that it is sometimes difficult to mix the two different solutions completely," Wurst said.

Almost all of Cellendes' customers are doing basic research within the field of the life sciences. However, their hydrogels could also be useful in the chemical industry and within drug and cosmetic development. "Efforts are made to reduce the number of experimental animal testings. In our system the cells are cultured in a more natural environment and could replace certain animal models," Wurst said.

Within the European Commission-funded project ProNano -Promoting Technology Transfer of Nanosciences, Nanotechnologies, Materials and new Production Technologies, Cellendes researchers have been selected to receive coaching to make their results in nanotechnologies reach the market.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +39 027002572
Fax: +39 027002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project