Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solar-thermal flat-panels that generate electric power: Boston College and MIT researchers see broad residential and industrial applications

Abstract:
High-performance nanotech materials arrayed on a flat panel platform demonstrated seven to eight times higher efficiency than previous solar thermoelectric generators, opening up solar-thermal electric power conversion to a broad range of residential and industrial uses, a team of researchers from Boston College and MIT report in the journal Nature Materials.

Solar-thermal flat-panels that generate electric power: Boston College and MIT researchers see broad residential and industrial applications

Chestnut Hill, MA | Posted on May 1st, 2011

Two technologies have dominated efforts to harness the power of the sun's energy. Photovoltaics convert sunlight into electric current, while solar-thermal power generation uses sunlight to heat water and produce thermal energy. Photovoltaic cells have been deployed widely as flat panels, while solar-thermal power generation employs sunlight-absorbing surfaces feasible in residential and large-scale industrial settings.

Because of limited material properties, solar thermal devices have heretofore failed to economically generate enough electric power. The team's introduced two innovations: a better light-absorbing surface through enhanced nanostructured thermoelectric materials, which was then placed within an energy-trapping, vacuum-sealed flat panel. Combined, both measures added enhanced electricity-generating capacity to solar-thermal power technology, said Boston College Professor of Physics Zhifeng Ren, a co-author of the paper.

"We have developed a flat panel that is a hybrid capable of generating hot water and electricity in the same system," said Ren. "The ability to generate electricity by improving existing technology at minimal cost makes this type of power generation self-sustaining from a cost standpoint."

Using nanotechnology engineering methods, the team combined high-performance thermoelectric materials and spectrally-selective solar absorbers in a vacuum-sealed chamber to boost conversion efficiency, according to the co-authors, which include MIT's Soderberg Professor of Power Engineering Gang Chen, Boston College and MIT graduate students and researchers at GMZ Energy, a Massachusetts clean energy research company co-founded by Ren and Chen.

The findings open up a promising new approach that has the potential to achieve cost-effective conversion of solar energy into electricity, an advance that should impact the rapidly expanding residential and industrial clean energy markets, according to Ren.

"Existing solar-thermal technologies do a good job generating hot water. For the new product, this will produce both hot water and electricity," said Ren. "Because of the new ability to generate valuable electricity, the system promises to give users a quicker payback on their investment. This new technology can shorten the payback time by one third."

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project