Home > Press > Full 3-D Invisibility Cloak in Visible Light
Abstract:
Watching things disappear "is an amazing experience," admits Joachim Fischer of the Karlsruhe Institute of Technology in Germany. But making items vanish is not the reason he creates invisibility cloaks. Rather, the magic-like tricks are attractive demonstrations of the fantastic capabilities that new optical theories and nanotechnology construction methods now enable.
This new area, called "transformation optics" has turned modern optical design on its ear by showing how to manipulate light in ways long thought to be impossible. They promise to improve dramatically such light-based technologies as microscopes, lenses, chip manufacturing and data communications.
In his talk at this year's Conference on Lasers and Electro Optics (CLEO: 2011, May 1 - 6 in Baltimore), Fischer will describe the first-ever demonstration of a three-dimensional invisibility cloak that works for visible light—red light at a wavelength of 700 nm—independent of its polarization (orientation). Previous cloaks required longer wavelength light, such as microwaves or infrared, or required the light to have a single, specific polarization.
Fischer makes the tiny cloak—less than half the cross-section of a human-hair—by direct laser writing (i.e. lithography) into a polymer material to create an intricate structure that resembles a miniature woodpile. The precisely varying thickness of the "logs" enables the cloak to bend light in new ways. The key to this achievement was incorporating several aspects of a diffraction-unlimited microscopy technique into the team's 3-D direct writing process for building the cloak.
The dramatically increased resolution of the improved process enabled the team to create log spacings narrow enough to work in red light.
"If, in the future, we can halve again the log spacing of this red cloak, we could make one that would cover the entire visible spectrum," Fischer added.
Practical applications of combining transformation optics with advanced 3-D lithography (a customized version of the fabrication steps used to make microcircuits) include flat, aberration-free lenses that can be easily miniaturized for use in integrated optical chips, and optical "black holes" for concentrating and absorbing light. If the latter can also be made to work for visible light, they will be useful in solar cells, since 90 percent of the Sun's energy reaches Earth as visible and near-infrared light.
Presentation QTuG5 "Three-dimensional invisibility carpet cloak at 700 nm wavelength," by Joachim Fischer et al. is at 11 a.m. Tuesday, May 3. Fischer et al. will also present CML1, "Three-Dimensional Laser Lithography with Conceptually Diffraction-Unlimited Lateral and Axial Resolution," at 10:15 a.m. Monday, May 2.
CLEO: 2011 Program Information
CLEO: 2011 unites the fields of lasers and optoelectronics by bringing together all aspects of laser technology, from basic research to industry applications. The main broad topics areas at the meeting are fundamental science, science and innovations, applications and technology, and market focus. An exposition featuring 300 participating companies will be held concurrently with the scientific presentations.
Plenary Session keynote speakers include Donald Keck, retired vice president of Corning, talking about making the first low-loss optical fibers; James Fujimoto of MIT, talking about medical imaging using optical coherence tomography (OCT); Mordechai (Moti) Segev of the Technion-Israel Institute of Technology, speaking about the localization of light; and Susumu Noda of Kyoto University, talking about the control of photons in photonic crystals.
####
About CLEO
With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) and the Quantum Electronics Laser Science Conference (QELS) is where laser technology was first introduced. CLEO: 2011 will unite the field of lasers and electro-optics by bringing together all aspects of laser technology, with content stemming from basic research to industry application. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO: 2011 provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO: 2011 connects all of the critical vertical markets in lasers and electro-optics.
For more information, please click here
Contacts:
Angela Stark
OFC/NFOEC
202.416.1443
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |