Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Abstract:
There is no doubt that the skill of surgeons plays a remarkable role in transforming the lives of hospital patients - from seriously injured victims of road traffic accidents to the recipients of heart and lung transplants. However, without the use of a range of different chemical drugs, surgeons would not be able to operate. One important drug is heparin, which thins the blood and allows surgeons to operate without clotting taking place. However, once surgery is finished, it is essential to remove the heparin and allow clotting to occur so the patient can recover. This is currently done by giving the patient a second drug, protamine. However, because protamine is a natural product arising from shellfish, some patients exhibit serious allergic responses.

Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Heslington, UK | Posted on April 26th, 2011

In their recent work, published in Angewandte Chemie, the Smith group have developed synthetic molecules which are capable of binding heparin. These molecules are designed to self-assemble into nanometre-sized structures with similar dimensions to protamine and containing multiple heparin binding units. It was shown that these nanosystems could bind to heparin just as effectively as protamine. ‘Clearly there is lots of fundamental work still to be done before clinical application,' says Smith, ‘but we hope that this approach may eventually yield biocompatible and degradable heparin binders, which will help surgical recovery without any of the side effects which can be caused by protamine'.

####

For more information, please click here

Contacts:
Department of Chemistry
University of York, Heslington, York, YO10 5DD, UK
Tel: work 44 01904 322511
Fax: fax 44 01904 322516

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project