Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel ash analysis validates volcano no-fly zones

Abstract:
Air safety authorities essentially had to fly blind when the ash cloud from Eyjafjallajökull caused them to close the airspace over Europe last year. Now a team of nanoscientists from Copenhagen have developed a way to provide the necessary information within hours.

Novel ash analysis validates volcano no-fly zones

Copenhagen, Denmark | Posted on April 26th, 2011

Planes were grounded all over Europe when the Eyjafjallajökull volcano erupted in Iceland last year. But no one knew if the no fly zone was really necessary. And the only way to find out would have been to fly a plane through the ash cloud - a potentially fatal experiment.

Now a team of researchers from the University of Copenhagen and the University of Iceland have developed a protocol for rapidly providing air traffic authorities with the data they need for deciding whether or not to ground planes next time ash threatens airspace safety.
Volcanic ash was indeed dangerous

A study by the teams of Professors Susan Stipp from the Nano-Science Centre of the University of Copenhagen and Sigurdur Gislason from the University of Iceland is reported this week in the internationally recognized journal PNAS (Proceedings of the National Academy of Science, USA).

Volcanic ash could crash planes if the particles are small enough to travel high and far, if they are sharp enough to sandblast the windows and bodies of airplanes, or if they melt inside jet engines. The ash from the Eyjafjallajökull eruption was dangerous on all counts, so the authorities certainly made the right decision in April 2010. That's one conclusion from the Copenhagen/Iceland paper but Professor Stipp thinks the team's most important contribution is a method for quickly assessing future ash.

"I was surprised to find nothing in the scientific literature or on the web about characterising ash to provide information for aviation authorities. So we decided to do something about it," explains Stipp.
10 million affected

Some 10 million travellers were affected by the ash plume, which cost an estimated two and a half billion Euros.

"Aviation authorities were sitting on a knife-edge at the centre of a huge dilemma. If they closed airspace unnecessarily, people, families, businesses and the economy would suffer, but if they allowed air travel, people and planes could be put at risk, perhaps with tragic consequences," says Professor Stipp.

So Susan Stipp phoned her colleague and friend in Reykjavik, Siggi Gislason and while the explosive eruptions were at their worst, he and a student donned protective clothing, collected ash as it fell and sent some samples to Denmark.

"In the Nano-Science Centre at the University of Copenhagen, we have analytical facilities and a research team that are unique in the world for characterising natural nanoparticles and their reaction with air, water and oil." explains Professor Susan Stipp.
Reliable answers in less than 24 hours

The newly developed protocol for assessing future ash can provide information for safety assessment in less than 24 hours. Within an hour of receiving the samples, scientists can tell how poisonous they are for the animals and people living closest to the eruption. Half a day enables them to predict the danger of sandblasting on aircraft, and assess the risk of fouling jet engines. Within a day they can tell the size of the particles, providing data for predicting where and how far the ash cloud will spread. Susan Stipp hopes that because of the analysis protocol, aviation authorities will not face such an impossible dilemma next time fine-grained ash threatens passenger safety.

"Some of the analytical instruments needed are standard equipment in Earth science departments and some are commonly used by materials scientists, so with our protocol, aviation authorities ought to be able to get fast, reliable answers," concludes Professor Stipp.

####

For more information, please click here

Contacts:
Professor Susan Stipp
Mobile: +45 28 75 02 02
Email:

Communications officer Jes Andersen
Mobile: +45 30 50 65 82
Email:

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project