Home > Press > PSE Success Story: Molecular “Stencils” Open Up New Possibilities for Solar Energy
![]() |
This diagram shows the scheme for patterning inorganic nanoscale features onto the substrate by applying SIS onto a self-assembled PS-b-PMMA block copolymer film template. |
Abstract:
Self-assembled nanomaterials provide a promising approach to fabricating more efficient and less expensive solar energy systems.
The Challenge
Nanofabrication techniques such as electron beam lithography and block copolymer self-assembly can be effective, but in many cases these approaches are either too costly or do not yield materials with the desired combination of nanostructure and physical properties.
The Solution
Researchers from Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a new technique known as sequential infiltration synthesis (SIS), which involves the growth of inorganic materials within polymeric templates. In one embodiment, SIS relies on the creation of self assembled nanoscale chemical domains into which other materials can be grown. A film composed of block copolymers acts as a template for the creation of a highly-tunable patterned material.
SIS is an extension of atomic layer deposition (ALD). But instead of just layering two-dimensional films of different nanomaterials on top of one another, SIS allows scientists to construct materials that have much more complex geometries.
The Results
SIS enables the creation of materials that weren't possible with ALD or block copolymers alone. By providing the ability to control the geometry of a material as well as its chemical composition, SIS opens the door to new nanomaterials that could potentially find their way into future generations of solar cells, catalysts, and photonic crystals. Argonne researchers are continuing work to optimize this methodology for specific applications and to test its limits.
"Our solar energy future does not have a one-size-fits-all solution," said Argonne chemist Jeff Elam. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers many new routes of attack."
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
For more information, please click here
Contacts:
Seth Darling
Jeff Elam
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |