Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Argonne Researcher named top-5 materials scientist of 2000s

Yugang Sun
Yugang Sun

Abstract:
Argonne scientist Yugang Sun has been recognized as the one of the five top materials scientists in the world over the past decade, according to a new ranking recently released by Thomson Reuters.

Argonne Researcher named top-5 materials scientist of 2000s

Argonne, IL | Posted on April 6th, 2011

Sun garnered the fifth place in Thomson Reuters' ranking of the top 100 materials scientists of the past decade as measured by how frequently their papers were cited by their peers. Sun also was ranked number 61 in a similar list of the top 100 chemists in the world.

"It's a terrific honor to receive this kind of recognition," Sun said. "Everyone on this list has made major contributions to chemistry and materials science research, and I'm glad that I could do my part to advance the field to where it is today."

In the past 10 years, Sun led the invention of two unique processes for the creation of nanocrystals. The most famous, called the polyol process, which reacts a special class of alcohols with metal salts to create shaped nanoparticles of many different types of metals.

According to Sun, the methods that he used to create nanoparticles were so efficient and widely adopted that they caused a spike in demand for the special chemicals needed. "Once other scientists noticed that they could create nanoparticles so easily, it was almost like the California gold rush," he said.

Sun's interest in materials science emerged early during his studies as a high school student in China. One of his chemistry teachers took a particular liking to him, and worked with Sun after school and on weekends to foster his natural talents.

After graduating college, Sun wanted to continue his study at a pre-eminent graduate school in the United States, but he could not afford the expense. "I found it a lot more financially beneficial to complete my Ph.D. studies in China then look for a postdoctoral position in America," he said.

Today, Sun devotes most of his time at Argonne's Center for Nanoscale Materials (CNM) to the study of the complex growth mechanisms of nanoparticle formation that underlie the well known chemistries in solution phase. "I am lucky to work at CNM," he said, "where easy access to these state-of-art facilities gives me the unique opportunity to develop new techniques for probing the mysteries behind nanoparticle growth. The more we know, the better we can control nanoparticle growth and tailor their properties for applications ranging from energy harvesting and conversion, photonics and optical sensing."

####

About Argonne National Laboratory
The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project