Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biodegradable Biopolymer Nanoparticles Hold Promise for Twin Attack on Breast Cancer

Abstract:
Using a biodegradable polymer produced by a slime mold, a team of investigators from Cedars-Sinai Medical Center has created a multifunctional nanoparticle that attacks a key pathway involved in breast cancer in two different ways. Tests using animals with human breast tumors showed that the new nanoparticle produced a 90% reduction in tumor growth.

Biodegradable Biopolymer Nanoparticles Hold Promise for Twin Attack on Breast Cancer

Bethesda, MD | Posted on March 26th, 2011

Julia Ljubimova, principal investigator of the National Cancer Institute-funded Cancer Nanotechnology Platform Partnership at Cedars Sinai, led this study. She and her colleagues published their findings in the journal Cancer Research.

Late last year, Dr. Ljubimova and her team had demonstrated that nanoparticles made from the slime mold polymer polymalic acid could successfully target brain tumors and that these nanoparticles were well-tolerated by laboratory animals. In the current work, the Cedars-Sinai team used the same polymer as the backbone on which to hang an antisense oligonucleotide that would greatly reduce a breast cancer cell's production of the HER2/neu protein; the drug Herceptin, which acts to target cancer cells and to further block the activity of the HER2/neu protein; and an antibody to the transferrin receptor, which is overexpressed on the blood vessels that surround tumors. This antibody serves as an initial targeting agent that helps concentrate the nanoparticle around tumors.

When the researchers used this construct to treat mice bearing human HER2/neu-positive breast tumors, the results were dramatic. HER2/new activity dropped precipitously in the treated animals, resulting in a marked reduction in tumor growth and even tumor regression. In contrast, tumor growth was only partially inhibited in animals treated with either Herceptin or the antisense oligonucleotide.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Polymalic Acid-Based Nanobiopolymer Provides Efficient Systemic Breast Cancer Treatment by Inhibiting both Her2/neu Receptor Synthesis and Activity."

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project