Home > Press > Nanoparticles Increase Survival after Blood Loss
Abstract:
In an advance that could improve battlefield and trauma care, scientists at University of California San Diego and Albert Einstein College of Medicine of Yeshiva University have used tiny particles called nanoparticles to improve survival after life-threatening blood loss. Nanoparticles containing nitric oxide (NO) were infused into the bloodstream of hamsters, where they helped maintain blood circulation and protect vital organs. The research was reported in the February 21 online edition of the journal Resuscitation.
The new nanomedicine, tested in this study in animal models, was developed to address the need for better field treatments for cases of massive blood loss, which can cause cardiovascular collapse, also known as hemorrhagic shock. This potentially fatal condition is best treated with infusions of allogeneic blood and other fluids. But such treatments are limited to emergency rooms or trauma centers.
"It is highly impractical to pack these supplies for use in rural emergencies, mass-casualty disasters or on the battlefield," said coauthor Joel Friedman, M.D., Ph.D., professor of physiology & medicine and of medicine and the Young Men's Division Chair in Physiology at Einstein. "Our nanoparticle therapy may offer the potential for saving lives in those situations. It's lightweight and compact and doesn't require refrigeration."
The new therapy counters hemorrhagic shock by increasing the body's levels of NO gas, which, among other physiological functions, relaxes blood vessels and regulates blood pressure.
The gas is generated inside microscopic-sized particles that were developed by the Einstein team. NO is so short-lived that delivering it in therapeutic amounts requires a method of sustained release. The therapy is created by adding the NO-containing nanoparticles to saline solution, which was then infused into the animals. Once in the body, the nanoparticles gradually release a sustained dose of NO to tissues.
The new nanomedicine was successfully tested at UC San Diego in hamsters that had lost half their blood volume.
"Animals given the nanoparticles exhibited better cardiac stability, stronger blood flow to tissues and other measures of hemorrhagic shock recovery compared to controls receiving saline solution minus the nanoparticles," reported Dr. Friedman.
"The NO gas slows the fight-or-flight response to severe bleeding that restricts blood flow, causing hemorrhagic shock irreversibility. This is a significant step to establish the basis for new treatments for hemorrhagic shock; increasing the odds of survival when fluid resuscitation or definitive interventions are not available," said paper coauthor Pedro Cabrales Ph.D., a professor in the Department of Bioengineering from the UC San Diego, Jacobs School of Engineering.
Decreasing vasoconstriction could make modern therapies for treating hemorrhagic shock more effective by allowing blood and other fluids to promptly reach the microcirculation.
Two previously published studies by Dr. Cabrales and Dr. Friedman and colleagues have demonstrated the beneficial effects of IV injected NO-containing nanoparticles for reversing blood substitute-induced hypertension, increasing tissue perfusion and reducing inflammation.
The paper, "Exogenous Nitric Oxide Prevents Cardiovascular Collapse During Hemorrhagic Shock," appears in the Februrary 21, 2011 online edition of Resuscitation. Other Einstein authors of the study were Adam Friedman, M.D. and Parimala Nachuraju, Ph.D.CoauthorPedro Cabrales, Ph.D., of the University of California, San Diego, California, carried out the animal studies.
####
About UCSD
Founded in 1960, the University of California, San Diego is one of the nation’s most accomplished research universities, widely acknowledged for its local impact, national influence and global reach. The campus is ideally located near the Pacific Ocean, the U.S.-Mexico border and the Pacific Rim. UC San Diego is renowned for its collaborative, diverse and cross-disciplinary ethos that transcends traditional boundaries in science, arts and the humanities. The university’s award-winning scholars are experts at the forefront of their fields with an impressive track record for achieving scientific, medical and technological breakthroughs. A leader in climate science research, UC San Diego is one of the greenest universities in the nation and promotes sustainability solutions throughout the region and the world.
For more information, please click here
Contacts:
Daniel Kane
Copyright © UCSD
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||