Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Combined molecular study techniques reveal more about DNA proteins

Illinois researchers developed a new technique that
combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock
Illinois researchers developed a new technique that combines optical traps (red) with fluorescence (green) to study the proteins that regulate DNA.

Photo by Matthew Comstock

Abstract:
Illinois researchers have combined two molecular imaging technologies to create an instrument with incredible sensitivity that provides new, detailed insight into dynamic molecular processes.

Combined molecular study techniques reveal more about DNA proteins

Champaign, IL | Posted on March 2nd, 2011

Physics professors Taekjip Ha and Yann Chemla and combined their expertise in single-molecule biophysics - fluorescence microscopy and optical traps, respectively - to study binding and unbinding of individual DNA segments to a larger strand. They and their joint postdoctoral researcher Matthew Comstock detail their technique in a paper published in the Feb. 20 online edition of Nature Methods.

Both professors, who are also affiliated with the U. of I. Institute for Genomic Biology, have particularly studied proteins and enzymes that regulate DNA, such as the enzyme helicase that unwinds DNA for duplication or transcription to RNA. Fluorescent microscopy techniques allow researchers to observe proteins as they conform and move, but often lack the spatial range to track the protein's motion over distance.

Optical traps, meanwhile, enable researchers to study a protein's translocation, but not its conformation. Chemla compares traditional optical traps to fishing. A single molecule of DNA is tethered between two attachment points, and the activity of a protein bound to it is only inferred from how it tugs on the tether, much like a fish at the end of a line. This can reveal a lot about a protein's activity and motion, but the technique has glaring limitations as well. For example, it is difficult to know how many proteins or the types of proteins that are involved.
"Also, these proteins may do all sorts of things beyond tugging on our line that we may not be sensitive to," Chemla said. "Fluorescence allows you to have an additional readout to actually see these things, and the key is that we can now measure them simultaneously. This work was a real synthesis of the expertise of two groups at the Center for the Physics of Living Cells at the U. of I."

The combination allows Chemla, Ha and their group to measure both a protein's motion - sensitive to translocation as small as one DNA base pair, a distance of only a few angstroms - and also conformational changes as it acts. This can reveal details about its mechanism that would not have been accessible before.

"It was a major technical challenge, but the final product is a one-of-a-kind instrument with unique capabilities," Chemla said. "It's like taking a rudimentary, real-time ‘movie' of what individual molecules are doing."

The National Science Foundation, National Institutes of Health and the Howard Hughes Medical Institute supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Yann Chemla
217-333-6501


Taekjip Ha
217-265-0717

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Ultrahigh-Resolution Optical Trap With Single-Fluorophore Sensitivity.”

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project