Home > News > The World´s Smallest Pipettes: Capillary Action in Carbon Nanotubes
March 1st, 2011
The World´s Smallest Pipettes: Capillary Action in Carbon Nanotubes
Abstract:
Encapsulated metal nanoparticles can be extracted from carbon nanotubes through reverse capillary action.
It helps plants to transport water from their roots to their leaves. It is the reason why a sponge can be used for cleaning. It allows for the separation of different substances by chromatographic techniques like thin layer chromatography. Capillarity is the fundament of many biological and physical processes. However, this phenomenon is relevant not only on the macroscopic scale; with an increasing interest in nanofluidic devices, the effects of capillarity on the nanoscale have become an important topic, too. Possible applications of nanofluidic devices include promising areas like the separation of biomolecules, single-molecule analysis, or drug-delivery systems, and it is crucial to understand if the balance of capillary forces on the nanoscale resembles the one in the bulk material. Kirsten Edgar et al. from Wellington, New Zealand, now demonstrated for the first time that it is possible to withdraw an encapsulated metal particle from a multi-walled carbon nanotube via reverse capillary action, a fact that could make carbon nanotubes suitable for the use as pipettes.
Source:
materialsviews.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||