Home > News > The World´s Smallest Pipettes: Capillary Action in Carbon Nanotubes
March 1st, 2011
The World´s Smallest Pipettes: Capillary Action in Carbon Nanotubes
Abstract:
Encapsulated metal nanoparticles can be extracted from carbon nanotubes through reverse capillary action.
It helps plants to transport water from their roots to their leaves. It is the reason why a sponge can be used for cleaning. It allows for the separation of different substances by chromatographic techniques like thin layer chromatography. Capillarity is the fundament of many biological and physical processes. However, this phenomenon is relevant not only on the macroscopic scale; with an increasing interest in nanofluidic devices, the effects of capillarity on the nanoscale have become an important topic, too. Possible applications of nanofluidic devices include promising areas like the separation of biomolecules, single-molecule analysis, or drug-delivery systems, and it is crucial to understand if the balance of capillary forces on the nanoscale resembles the one in the bulk material. Kirsten Edgar et al. from Wellington, New Zealand, now demonstrated for the first time that it is possible to withdraw an encapsulated metal particle from a multi-walled carbon nanotube via reverse capillary action, a fact that could make carbon nanotubes suitable for the use as pipettes.
Source:
materialsviews.com
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |