Home > Press > Magnetic Field Directs Nanoparticles to Tumors
Abstract:
To improve the tumor-specific delivery of drug to tumors, a team of investigators from the University of California, San Diego (UCSD) has created a system of nanoparticles-within-a-nanoparticle that can be directed to and concentrated at the site of tumor using a magnetic field. Once at the tumor site, radiofrequency irradiation triggers drug release from the nanoparticles, bathing the tumors in drug and markedly reducing the growth of the tumors.
Reporting its work in the journal Nano Letters, a research team led by Sungho Jin described the multiple steps it uses to create these multi-component nanoparticles that contain both magnetic nanoparticles and the drug Camptothecin trapped within a silica shell. Trapped within the silica nanoparticle, the close proximity of the hundreds of magnetic iron oxide nanoparticles boosts their responsiveness to a magnetic field applied from outside the body. More importantly, at moderate magnetic field strengths the nanoparticles not only accumulate in the vicinity of a tumor but also penetrate into the tumor mass.
Based on these initial results, the investigators injected the nanoparticles into mice implanted with human breast tumors. After using a magnetic field to direct the nanoparticles to tumors during a two-hour period, the researchers subjected the animals to three 8-minute exposures to radiofrequency irradiation. The treated animals experienced a marked reduction in the size of their tumors and experienced no noticeable side effects.
####
About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 451-8983
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||