Home > Press > Next-generation light source gets boost from powerful new analysis technique
Abstract:
A new analysis technique for the design and optimization of beam optics has successfully been used to model the group behavior of electron beams over a linear accelerator, paving the way for its use at linear accelerator based light source facilities around the world.
The technique contributes to improved operation of the X-ray Free-Electron Laser (XFEL) under construction at the RIKEN SPring-8 synchrotron radiation facility, whose intense beams will open a unique window onto the minuscule structure of molecules and the rapid reaction of chemical species.
Despite its key importance to all fields of science, the world of atoms and molecules exists beyond the reach of traditional observation techniques, holding back progress in research on everything from molecular biology to nanotechnology.
The new XFEL at RIKEN, Japan's flagship research institute, will shed first-ever light on this hidden world, delivering radiation one billion times brighter and with pulses one thousand times shorter than existing X-ray sources such as SPring-8. The XFEL facility will be only the second laser of its kind in the world when it opens in 2011.
Obtaining a stable XFEL beam, however, is not an easy task. To do so, the transverse distribution of electrons ejected from the XFEL's linear accelerator must be carefully calibrated each time conditions change to match the configuration of magnets (undulators) where X-ray laser radiation is emitted (Fig. 2). In experiments with a small test accelerator, researchers performed this calibration by directly measuring the laser intensity, but the full-sized XFEL is too complicated for this approach to work.
The new technique, developed at RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI), solves this problem by rapidly and precisely computing the effect of changes in optics using information on electron beam distributions after full bunch compression (Fig. 3). By doing so, the technique plays a key role in ensuring the successful operation of the XFEL, whose intense beams promise to herald a new era of scientific exploration and discovery.
Journal information
Toru Hara, Kazuaki Togawa and Hitoshi Tanaka. Transverse envelope analysis for accelerating relativistic electron beams in a linear accelerator as a photon source. Nuclear Instruments and Methods in Physics Research Section A, 17 September 2010. DOI: 10.1016/j.nima.2010.09.035
####
For more information, please click here
Contacts:
Dr. Hitoshi Tanaka
Beam Commissioning Team
XFEL Project Head Office
Tel/Fax: +81-(0)791-58-2862
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687
Copyright © RIKEN
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||